Page 349 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 349

340                              Appendix I

                             Trace
                             The trace Tr A of a square matrix A is de®ned as the sum of the diagonal elements
                                                                                                (I:59)
                                                    Tr A ˆ a 11 ‡ a 22 ‡     ‡ a nn
                             The operator Tr is a linear operator because
                               Tr(A ‡ B) ˆ (a 11 ‡ b 11 ) ‡ (a 22 ‡ b 22 ) ‡     ‡ (a nn ‡ b nn ) ˆ Tr A ‡ Tr B  (I:60)
                             and
                                              Tr(cA) ˆ ca 11 ‡ ca 22 ‡     ‡ ca nn ˆ c Tr A     (I:61)
                               The trace of a product of two matrices, which may or may not commute, is
                             independent of the order of multiplication
                                                      n  n         n   n
                                                     X X          X X
                                            Tr(AB) ˆ        a ij b ji ˆ  b ji a ij ˆ Tr(BA)     (I:62)
                                                     iˆ1 jˆ1       jˆ1 iˆ1
                             Thus, the trace of the commutator [A, B]   AB ÿ BA is equal to zero. Furthermore,
                             the trace of a continued product of matrices is invariant under a cyclic permutation of
                             the matrices
                                        Tr(ABC     Q) ˆ Tr(BC     QA) ˆ Tr(C     QAB) ˆ         (I:63)
                               For a hermitian matrix, the trace is the sum of its eigenvalues
                                                                   n
                                                                 X
                                                           Tr A ˆ    ë á                        (I:64)
                                                                  áˆ1
                             To demonstrate the validity of equation (I.64), we ®rst take the trace of (I.58) to obtain
                                                                         n
                                                                        X
                                                         ÿ1
                                                     Tr(X AX) ˆ Tr Ë ˆ     ë á                  (I:65)
                                                                        áˆ1
                             We then note that
                                              n              n   n  n
                                             X              X X X
                                     ÿ1           ÿ1                    ÿ1
                                 Tr(X AX) ˆ     (X AX) áá ˆ           X   a ij X já
                                                                        ái
                                             áˆ1            áˆ1 iˆ1 jˆ1
                                              n   n    n            n  n          n
                                             X X      X       ÿ1   X X          X
                                           ˆ        a ij  X já X  ˆ       a ij ä ij ˆ  a ii ˆ Tr A  (I:66)
                                                              ái
                                             iˆ1 jˆ1  áˆ1          iˆ1 jˆ1       iˆ1
                                          (á)
                             where X já (  x ) are the elements of X. Combining equations (I.65) and (I.66), we
                                          j
                             obtain equation (I.64).
   344   345   346   347   348   349   350   351   352   353   354