Page 348 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 348

Matrices                              339

                          The eigenvectors of a hermitian matrix with different eigenvalues are orthogonal. To
                        prove this statement, we consider two distinct eigenvalues ë 1 and ë 2 and their
                                                       (2)
                        corresponding eigenvectors x (1)  and x , so that
                                                     Ax (1)  ˆ ë 1 x (1)                  (I:52a)
                                                     Ax (2)  ˆ ë 2 x (2)                  (I:52b)
                        If we multiply equation (I.52a) from the left by x (2)  y  and the adjoint of (I.52b) from the
                                (1)
                        right by x , we obtain
                                       x (2)  y Ax (1)  ˆ ë 1 x (2)  y x (1)              (I:53a)

                                                       y (1)
                                         (2) y (1)
                                      (Ax ) x   ˆ x (2) y A x  ˆ x (2)  y Ax (1)  ˆ ë 2 x (2)  y x (1)  (I:53b)
                        where we have used equation (I.10) and noted that ë 2 is real. Subtracting equation
                        (I.53b) from (I.53a), we ®nd
                                                  (ë 1 ÿ ë 2 )x (2)  y x (1)  ˆ 0
                        Since ë 1 is not equal to ë 2 , we see that x (1)  and x (2)  are orthogonal.
                          The eigenvector x (á)  corresponding to the eigenvalue ë á may be determined by
                        substituting the value for ë á into equation (I.47) and then solving the resulting
                                                             (á)  (á)    (á)   (á)
                        simultaneous equations for the components x , x , ... , x n  of x  in terms of the
                                                                 3
                                                             2
                                      (á)
                        ®rst component x . The value of the ®rst component is arbitrary, but it may be
                                      1
                        speci®ed by requiring that the vector x (á)  be normalized, i.e.,
                                                                        (á) 2
                                                           (á) 2
                                                   (á) 2
                                        x (á)  y x (á)  ˆjx j ‡jx j ‡     ‡ jx j ˆ 1       (I:54)
                                                   1       2            n
                        The determination of the eigenvectors for degenerate eigenvalues is somewhat more
                        complicated and is not discussed here.
                          We may construct an n 3 n matrix X using the n orthogonal eigenvectors x (á)  as
                        columns
                                                   0  (1)  (2)      (n)  1
                                                     x    x         x
                                                      1    1        1
                                                      (1)  (2)
                                                     x    x         x
                                                   B                (n) C
                                               X ˆ  B  2   2        2 C                    (I:55)
                                                   @                  A

                                                     x (1)  x (2)       x (n)
                                                      n    n        n
                        and a diagonal matrix Ë using the n eigenvalues
                                                   0                  1
                                                      ë 1  0         0
                                                   B  0   ë 2        0  C
                                               Ë ˆ  B                 C                    (I:56)
                                                   @                         A
                                                      0    0         ë n
                        Equation (I.47) may then be written in the form
                                                       AX ˆ XË                             (I:57)
                        The matrix X is easily seen to be unitary. Since the n eigenvectors are linearly
                        independent, the matrix X is non-singular and its inverse X ÿ1  exists. If we multiply
                                                   ÿ1
                        equation (I.57) from the left by X , we obtain
                                                      X AX ˆ Ë                             (I:58)
                                                        ÿ1
                        This transformation of the matrix A to a diagonal matrix is an example of a similarity
                        transform.
   343   344   345   346   347   348   349   350   351   352   353