Page 274 - PVT Property Correlations
P. 274

240  PVT Property Correlations



              TABLE 10.6 Final Weight Values
              W1                W2                W3                W4
              0.974             0.259             0.053             2 0.197

              W5                W6                W7                W8
              2 3.868           2 5.295           5.933             0.655




                      0.35

                      0.30

                      0.25
                     Network total error  0.20


                      0.15
                      0.10

                      0.05
                      0.00
                          0         20        40        60        80
                                            Iteration
            FIGURE 10.8 Network error progression.


            ANN with the new weights (after 3,000 iterations), the two output nodes
            generate 0.01004482 (compared to 0.01 required value) and 0.99000002
            (compared to 0.99 required value). The final weights (after 3000 iterations)
            are given in Table 10.6. The progression of the ANN error for the first 70
            iterations is shown in Fig. 10.8.

            ARTIFICIAL NEURAL NETWORK OPTIMIZATION

            Several parameters can be used to optimize an ANN for the calculation of
            PVT properties. A key requirement is to have many valid data records with
            input and output values. The ANN parameters that can be optimized for a
            particular ANN include the ANN topography (structure or layout); number
            of hidden layers; number of nodes per hidden layer; layer connections; ini-
            tialization; choice of transfer and activation functions; objective function;
            and training and running control. The following paragraphs summarize the
            use of these parameters.
   269   270   271   272   273   274   275   276   277   278   279