Page 100 - Phase Space Optics Fundamentals and Applications
P. 100

Rotations in Phase Space    81


                 From the fact that U f (
, 
) commutes with any unitary matrix U
                                    U
               follows that the mode H m,n (r) is an eigenfunction for the symmetric
               fractional FT with eigenvalue exp[−i(m + n+ 1)
]. Then the kernel of
               the symmetric fractional FT, Eq. (3.27), can be alternatively presented
               as a series of products of the orthosymplectic modes.

                               ∞
                              ,                              −1
               K  U f (
,
)  (r i , r o ) =  exp[−i(m + n + 1)
] H U  (r 0 )H U  (r i )  (3.66)
                                                     m,n
                                                            m,n
                              m,n=0
                                           U
                 The orthosymplectic modes H m,n (r), modes obtained from the HG
               ones H m,n (r) by the RCT associated with matrix U, have the following
               generating function 40,42

                           2         t  −1      t  −1  √     t
                              exp −s U U s + 2s U r 2  −  r r
                                           ∗
                         det U
                           ∞   ∞           m+n  	 1/2
                           , ,           2
                                   U              m n
                         =       H   (r)         s s                (3.67)
                                   m,n    m!n!    x y
                           m=0 n=0
                      t
               where s = (s x ,s y ). They can be expressed as 40,42
                                              2
                                                  2
                               (−1) m+n  exp[ (x + y )]
                      U
                     H m,n  (r) =                  1/2
                              2 m+n−1/2  (  m+n m!n! det U)
                                                m
                                               	                 	 n
                                     ∂       ∂         ∂       ∂
                              ×  U ∗   + U ∗       U  ∗  + U  ∗
                                  11      21         12      22
                                    ∂x      ∂y         ∂x      ∂y
                                             2
                                         2
                              × exp[−2 (x + y )]                    (3.68)
               where U jk ( j, k = 1, 2) are parameters of the unitary matrix U. Thus
               for the separable fractional FT U = U f (  x ,   y ), this formula for any
               angles   x and   y reduces to the HG functions up to the constant phase
                                     1
                          1
               exp[−i(m + )  x − i(n + )  y ].
                          2          2
                 The orthosymplectic modes satisfy the symmetry relations
                                   U           m+n  U
                                 H m,n (−r) = (−1)  H m,n (r)
                                         ∗    −1
                                  U          U
                                 H m,n (r)  = H m,n (r)             (3.69)
               the derivative relations 39
                          
 t
                     ∂  ∂     U       √      √   U       √   U        t
                       ,    H m,n (r) = 2   U ∗  m H m−1,n (r),  n H m,n−1 (r)
                    ∂x ∂y
                                          U         t
                                     −2  H m,n (r) [x, y]           (3.70)
   95   96   97   98   99   100   101   102   103   104   105