Page 325 - Phase Space Optics Fundamentals and Applications
P. 325

306   Chapter Nine


               to exhausting the use of phase-space optics for exploring the self-
               imaging phenomenon. A number of related phenomena still await a
               thorough phase-space interpretation. It would be even more exciting,
               however, if the phase-space interpretation helped us to discover new
               self-imaging phenomena and applications not obvious from a Fourier
               optics perspective.




          References
                1. M. Bastiaans, “Application of the Wigner distribution function in optics,” in
                  W. Mecklenbr¨auker and F. Hlawatsch (eds.), The Wigner Distribution—Theory
                  and Applications in Signal Processing, Elsevier, Amsterdam, 1997, pp. 375–426.
                2. A. Torre, Linear Ray and Wave Optics in Phase Space, Elsevier, Amsterdam, 2005.
                3. M. Testorf, J. Ojeda-Casta˜neda, and A. W. Lohmann (eds.), Selected Papers on
                  Phase-Space Optics, volume MS 181 of SPIE Milestone Series. SPIE, Bellingham,
                  Wash., 2006.
                4. R. Castaneda, “Phase space representation of spatially partially coherent imag-
                  ing,” Appl. Opt. 47: E53–E62 (2008).
                5. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, New York, 1991.
                6. H. F. Talbot, “Facts relating to optical science. No IV,” Philosophical Mag., J. Sci.,
                  9: 401–407 (1836).
                7. Lord Rayleigh, “On copying diffraction gratings, and on some phenomena
                  connected therewith,” Philosophical Mag., 11: 196–205 (1881).
                8. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am.
                  57: 772–778 (1967).
                9. K. Patorski, “The self-imaging phenomenon and its applications,” in E. Wolf
                  (ed.), Progress in Optics, vol. XXVII, Elsevier Science, Amsterdam, 1989, pp.
                  1–108.
               10. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel images. I. Plane peri-
                  odic objects in monochromatic light,” J. Opt. Soc. Am. 55: 373–381 (1965).
                11. J. P. Guigay, “On Fresnel diffraction by one-dimensional periodic objects, with
                  applicationto structuredeterminationof phaseobjects,” Opt.Comm. 18: 677–682
                  (1971).
               12. J. Westerholm, J. Turunen, and J. Huttunen, “Fresnel diffraction in fractional
                  Talbot planes: A new formulation,” J. Opt. Soc. Am. A 11: 1283–1290 (1994).
               13. H. Hamam, “Simplified linear formulation of Fresnel diffraction,” Opt. Comm.
                  144: 89–98 (1997).
               14. V. Arriz´on and J. Ojeda-Casta˜neda, “Fresnel diffraction of substructured grat-
                  ings: Matrix description,” Opt. Lett. 20: 118–120 (1995).
               15. V. Arriz´on, J. G. Ibarra, and J. Ojeda-Casta˜neda, “Matrix formulation of the
                  Fresnel transform of complex transmittance gratings,” J. Opt. Soc. Am. A 13:
                  2414–2422 (1996).
               16. S. B. Tucker, J. Ojeda-Casta˜neda, and W. T. Cathey, “Matrix description of near
                  field diffraction and the fractional Fourier transform,” J. Opt. Soc. Am. A 16:
                  316–322 (1999).
               17. A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik 79:
                  41–45 (1988).
               18. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the
                  Talbot effect,” Appl. Opt. 29: 4337–4340 (1990).
               19. J. R. Leger and G. J. Swanson, “Efficient array illuminator using binary-optics
                  phase plates at fractional Talbot planes,” Opt. Lett. 15: 288–290 (1990).
               20. V. Arriz´on and J. Ojeda-Casta˜neda, “Multilevel phase gratings for array illumi-
                  nators,” Appl. Opt. 33: 5925–5931 (1994).
   320   321   322   323   324   325   326   327   328   329   330