Page 326 - Phase Space Optics Fundamentals and Applications
P. 326
Self-Imaging in Phase Space 307
21. T. J. Suleski, “Generation of Lohmann images from binary-phase Talbot array
illuminators,” Appl. Opt. 36: 4686–4691 (1997).
22. W. Klaus, Y. Arimoto, and K. Kodate, “High performance Talbot array illumi-
nators,” Appl. Opt. 37: 4357–4365 (1998).
23. M. Testorf, V. Arriz´on, and J. Ojeda-Casta˜neda, “Numerical optimization of
phase-only elements based on the fractional Talbot effect,” J. Opt. Soc. Am. A
16: 97–105 (1999).
24. J. Jahns and A. W. Lohmann, “The Lau effect (a diffraction experiment with
incoherent light),” Opt. Comm. 28: 263–267 (1979).
25. F. Gori, “Lau effect and coherence theory,” Opt. Comm. 31: 4–8 (1979).
26. J. Jahns, A. W. Lohmann, and J. Ojeda-Casta˜neda, “Talbot and Lau effects, a
parageometrical approach,” Optica Acta 31: 313–324 (1984).
27. J. Ojeda-Casta˜neda and E. E. Sicre, “Quasi ray-optical approach to longitudinal
periodicities of free and bounded wavefields,” Optica Acta 32: 17–26 (1985).
28. M. Testorf and J. Ojeda-Casta˜neda, “Fractional Talbot effect: Analysis in phase
space,” J. Opt. Soc. Am. A 13: 119–125 (1996).
29. M. Testorf, “Designing Talbot array illuminators with phase-space optics,” J.
Opt. Soc. Am. A 23: 187–192 (2006).
30. A. W. Lohmann, Optical Information Processing, Universit¨atsverlag Illmenau,
Germany, 2006.
31. D. E. Silva, “Talbot interferometer for radial and lateral derivatives,” Appl. Opt.
11: 2613–2624 (1972).
32. E. Keren and O. Kafri, “Diffraction effects in moir´e deflectometry,” J. Opt. Soc.
Am. A 2: 111–120 (1985).
33. K.Banaszek,K.W´odkiewicz,andW.Schleich,“FractionalTalboteffectinphase-
space: A compact summation formula,” Opt. Express 2: 169–172 (1998).
34. K. Patorski, “Self-imaging phenomenon, lateral shift of Fresnel images,” Optica
Acta 30: 1255–1258 (1983).
35. V. Arriz´on, G. Rojo-Val´azquez, and J. G. Ibarra, “Fractional Talbot effect: Com-
pact description,” Opt. Rev. 7: 129–131 (2000).
36. Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm in
the fractional Fourier or the Fresnel domain,” Opt. Lett. 21: 842–844 (1996).
37. R. G. Dorsch, A. W. Lohmann, and S. Sinzinger, “Fresnel ping-pong algorithm
for two-plane computer-generated hologram display,” Appl. Opt. 33: 869–875
(1994).
38. H. Hamam, “Design of array illuminators under spherical illumination,” Appl.
Opt. 37: 1393–1400 (1998).
39. C. R. Fern´andez-Pousa, M. T. Flores-Arias, C. Bao, M. V. P´erez, and C. G´ omez-
Reino, “Talbot conditions, Talbot resonators, and first-order systems,” J. Opt.
Soc. Am. A 20: 638–643 (2003).
40. J. Aza˜na, “Spectral Talbot phenomena of frequency combs induced by cross-
phase modulation in optical fibers,” Opt. Lett. 30: 227–229 (2005).
41. M. J . Bastiaans, “The Wigner distribution function of partially coherent light,”
Optica Acta 28: 1215–1224 (1981).
42. K.-H. Brenner and J. Ojeda-Casta˜neda, “Ambiguity function and Wigner distri-
bution function applied to partially coherent imagery,” Optica Acta 31: 213–223
(1984).