Page 354 - Phase Space Optics Fundamentals and Applications
P. 354
Sampling and Phase Space 335
63. D. Mendelovic, Z. Zalevsky, and N. Konforti, “Computation considerations and
fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44: 407–414
(1997).
64. F. J. Marinho, J. Francisco, and L. Bernardo, “Numerical calculation of fractional
Fourier transforms with a single fast Fourier transform algorithm,” J. Opt. Soc.
Am. A 15: 2111–2116 (1998).
65. W. Cong, N. Chen, and B. Gu, “Recursive algorithm for phase retrieval in the
fractional Fourier transform domain,” Appl. Opt. 37: 6906–6910 (1998).
66. Y. Zhang, B. Dong, B. Gu, and G. Yang, “Beam shaping in the fractional Fourier
transform domain,” J. Opt. Soc. Am. A 15: 1114–1120 (1998).
67. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily
oriented planes based on full diffraction theory: A fast Fourier transform ap-
proach,” J. Opt. Soc. Am. A 15: 857–867 (1998).
68. C. Kopp and P. Meyrueis, “Near-field Fresnel diffraction: improvement of a
numerical propagator,” Opt. Comm. 158: 7–10 (1998).
69. D. Mas, J. Garcia, C. Ferriera, and L. M. Bernardo, “Fast algorithms for free
space diffraction patterns calculation,” Opt. Comm. 164: 233–245 (1999).
70. T. Erseghe, P. Kraniauskas, and G. Cariolaro, “Unified fractional Fourier trans-
form and sampling theorem,” IEEE Trans. Signal Proc. 47: 3419–3423 (1999).
71. C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier
transform,” IEEE Trans. Signal Proc. 48: 1329–1337 (2000).
72. X. Deng, B. Bihari, J. Gang, F. Zhao, and R. T. Chen, “Fast algorithm for chirp
transforms with zooming-in ability and its applications,” J. Opt. Soc. Am. A 17:
762–771 (2000).
73. N. Delen and B. Hooker, “Verification and comparison of a fast Fourier
transform-based full diffraction method for tilted and offset planes,” Appl. Opt.
40: 3525–3531 (2001).
74. W. T. Rhodes, “Numerical simulation of Fresnel-regime wave propagation: The
light tube model,” Proc. SPIE 4436: 21–26 (2001).
75. W. T. Rhodes, “Light tubes, Wigner diagrams and optical signal propaga-
tion simulation,” Optical Information Processing: A Tribute to Adolf Lohmann,
H. J. Caulfield (ed.), SPIE Press, Bellingharm, Wash., 2002.
76. J. Li, Z. Fan, and Y. Fu, “The FFT calculation for Fresnel diffraction and energy
conservation criterion of sampling quality,” Proc. SPIE 4915: 180–186 (2002).
77. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruc-
tion of holograms,” Meas. Sci. Technol. 13: 85–101 (2002).
78. D. Mas, J. Perez, C. Hernandez, C. Vazquez, J. J. Miret, and C. Illueca, “Fast
numerical calculation of Fresnel patterns in convergent systems,” Opt. Comm.
227: 245–258 (2003).
79. B. M. Hennelly and J. T. Sheridan, “The fast linear canonical transform,” Proc.
SPIE 5456: 71–82 (2004).
80. B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing
numerical algorithms for the fractional Fourier, Fresnel, and linear canonical
transforms,” J. Opt. Soc. Am. A 22: 917–927 (2005).
81. B. M. Hennelly and J. T. Sheridan, “Efficient algorithms for the linear canonical
transform,” Proc. SPIE 5557: 191–199 (2004).
82. K. Matsushima, “Computer-generated holograms for three-dimensional sur-
face objects with shade and texture,” Appl. Opt. 44: 4607–4614 (2005).
83. B. Gombk¨ot´´o, P. Koppa, P. Ma´ak, and E. L´´orincz, “Application of the fast-
Fourier-transform-based volume integral equation method to model volume
diffraction in shift-multiplexed holographic data storage,” J. Opt. Soc. Am. A
23: 2954–2960 (2006).
84. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration
method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45: 1102–
1110 (2006).
85. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for
computational holography,” Opt. Express 15: 5631–5640 (2007).