Page 353 - Phase Space Optics Fundamentals and Applications
P. 353

334   Chapter Ten


               38. T. Kreis, M. Adams, and W. Juptner, “Digital in-line holography in particle
                  measurement,” Proc. SPIE 3744: 54–64 (1999).
               39. G. Pedrini, P. Frning, H. Tiziani, and F. Santoyo, “Shape measurement of mi-
                  croscopic structures using digital holograms,” Appl. Opt. 164: 257–268 (1999).
               40. S. Schedin, G. Pedrini, H. Tiziani, A. Aggarwal, and M. Gusev, “Highly sensitive
                  pulsed digital holography for built-in defect analysis with a laser excitation,”
                  Appl. Opt. 40: 100–117 (2001).
               41. U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of
                  holograms,” Meas. Sci. Technol. 13: 85–101 (2002).
               42. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys.
                  Rev. 40: 749–759 (1932).
               43. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64: 779–788
                  (1974).
               44. L. Cohen, “Time-frequency distributions—A review,” Proc. IEEE 77: 941–981
                  (1989).
               45. M. J. Bastiaans, “Wigner distribution function and its application to first order
                  optics,” J. Opt. Soc. Am. 69: 1710–1716 (1979).
               46. M. J. Bastiaans, “Application of the Wigner distribution function in optics,”
                  The Wigner Distribution—Theory and Applications in Signal Processing.W.
                  Mecklenbrauker and F. Hlawatsch (eds.), Elsevier Science, Amsterdam, 1997.
               47. M. Testorf and J. Ojeda-Castaneda, “Fractional Talbot effect: Analysis in phase
                  space, J. Opt. Soc. Am. A 13: 119–125 (1996).
               48. A. W. Lohmann, “Image rotation, Wigner rotation and the fractional Fourier
                  transform,” J. Opt. Soc. Am. A 10: 2181–2186 (1993).
               49. A. W. Lohmann, R. G. Dorsch, D. Mendelovic, Z. Zalevsky, and C. Ferreira,
                  “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A
                  13: 470–473 (1996).
               50. D. Mendelovic and A. W. Lohmann, “Space-bandwidth product adaptation
                  and its application to superresolution: Fundamentals,” J. Opt. Soc. Am. A 14:
                  558–562 (1997).
               51. D. Mendelovic, A. W. Lohmann, and Z. Zalevsky, “Space-bandwidth product
                  adaptation and its application to superresolution: Examples,” J. Opt. Soc. Am.
                  A 14: 563–567 (1997).
               52. Z. Zalevsky, D. Mendelovic, and A. W. Lohmann, “Understanding superreso-
                  lution in Wigner space,” J. Opt. Soc. Am. A 17: 2422–2429 (2000).
               53. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
                  complex Fourier series,” Math. Comput. 19: 297–301 (1965).
               54. S. Nishiwaki, “Calculations of optical field by fast Fourier transform analysis,”
                  Appl. Opt. 27: 3518–3521 (1988).
               55. J. A. Hudson, “Fresnel-Kirchhoff diffraction in optical systems: An approximate
                  computational algorithm,” Appl. Opt. 23: 2292–2295 (1984).
               56. H. Hamam and J. Tocnaye, “Efficient Fresnel-transform algorithm based on
                  fractional Fresnel diffraction,” J. Opt. Soc. Am. A 12: 1920–1931 (1995).
               57. J. Garcia, D. Mas, and R. Dorsch, “Fractional Fourier transform calculation
                  through the fast Fourier transform algorithm,” Appl. Opt. 35: 7013–7018 (1996).
               58. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,”
                  Opt. Comm. 116: 43–48 (1995).
               59. X-G. Xia, “On bandlimited signals with fractional Fourier transform,” IEEE
                  Signal Proc. Lett. 3: 72–74 (1996).
               60. Z. Zalevsky, D. Mendelovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm
                  applied in the fractional Fourier or Fresnel domain,” Opt. Lett. 21: 842–844
                  (1996).
               61. Z. Zalevsky, D. Mendelovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm
                  applied in the fractional Fourier or Fresnel domain,” Opt. Lett. 21: 842–844
                  (1996).
               62. H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of
                  the fractional Fourier transform,” IEEE Trans. Signal Proc. 44: 2141–2150 (1996).
   348   349   350   351   352   353   354   355   356   357   358