Page 353 - Phase Space Optics Fundamentals and Applications
P. 353
334 Chapter Ten
38. T. Kreis, M. Adams, and W. Juptner, “Digital in-line holography in particle
measurement,” Proc. SPIE 3744: 54–64 (1999).
39. G. Pedrini, P. Frning, H. Tiziani, and F. Santoyo, “Shape measurement of mi-
croscopic structures using digital holograms,” Appl. Opt. 164: 257–268 (1999).
40. S. Schedin, G. Pedrini, H. Tiziani, A. Aggarwal, and M. Gusev, “Highly sensitive
pulsed digital holography for built-in defect analysis with a laser excitation,”
Appl. Opt. 40: 100–117 (2001).
41. U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of
holograms,” Meas. Sci. Technol. 13: 85–101 (2002).
42. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys.
Rev. 40: 749–759 (1932).
43. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64: 779–788
(1974).
44. L. Cohen, “Time-frequency distributions—A review,” Proc. IEEE 77: 941–981
(1989).
45. M. J. Bastiaans, “Wigner distribution function and its application to first order
optics,” J. Opt. Soc. Am. 69: 1710–1716 (1979).
46. M. J. Bastiaans, “Application of the Wigner distribution function in optics,”
The Wigner Distribution—Theory and Applications in Signal Processing.W.
Mecklenbrauker and F. Hlawatsch (eds.), Elsevier Science, Amsterdam, 1997.
47. M. Testorf and J. Ojeda-Castaneda, “Fractional Talbot effect: Analysis in phase
space, J. Opt. Soc. Am. A 13: 119–125 (1996).
48. A. W. Lohmann, “Image rotation, Wigner rotation and the fractional Fourier
transform,” J. Opt. Soc. Am. A 10: 2181–2186 (1993).
49. A. W. Lohmann, R. G. Dorsch, D. Mendelovic, Z. Zalevsky, and C. Ferreira,
“Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A
13: 470–473 (1996).
50. D. Mendelovic and A. W. Lohmann, “Space-bandwidth product adaptation
and its application to superresolution: Fundamentals,” J. Opt. Soc. Am. A 14:
558–562 (1997).
51. D. Mendelovic, A. W. Lohmann, and Z. Zalevsky, “Space-bandwidth product
adaptation and its application to superresolution: Examples,” J. Opt. Soc. Am.
A 14: 563–567 (1997).
52. Z. Zalevsky, D. Mendelovic, and A. W. Lohmann, “Understanding superreso-
lution in Wigner space,” J. Opt. Soc. Am. A 17: 2422–2429 (2000).
53. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Math. Comput. 19: 297–301 (1965).
54. S. Nishiwaki, “Calculations of optical field by fast Fourier transform analysis,”
Appl. Opt. 27: 3518–3521 (1988).
55. J. A. Hudson, “Fresnel-Kirchhoff diffraction in optical systems: An approximate
computational algorithm,” Appl. Opt. 23: 2292–2295 (1984).
56. H. Hamam and J. Tocnaye, “Efficient Fresnel-transform algorithm based on
fractional Fresnel diffraction,” J. Opt. Soc. Am. A 12: 1920–1931 (1995).
57. J. Garcia, D. Mas, and R. Dorsch, “Fractional Fourier transform calculation
through the fast Fourier transform algorithm,” Appl. Opt. 35: 7013–7018 (1996).
58. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,”
Opt. Comm. 116: 43–48 (1995).
59. X-G. Xia, “On bandlimited signals with fractional Fourier transform,” IEEE
Signal Proc. Lett. 3: 72–74 (1996).
60. Z. Zalevsky, D. Mendelovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm
applied in the fractional Fourier or Fresnel domain,” Opt. Lett. 21: 842–844
(1996).
61. Z. Zalevsky, D. Mendelovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm
applied in the fractional Fourier or Fresnel domain,” Opt. Lett. 21: 842–844
(1996).
62. H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of
the fractional Fourier transform,” IEEE Trans. Signal Proc. 44: 2141–2150 (1996).