Page 352 - Phase Space Optics Fundamentals and Applications
P. 352
Sampling and Phase Space 333
11. A. Papoulis, Signal Analysis, McGraw-Hill, New York, 1977.
12. F.Gori,“Fresneltransformandsamplingtheorem,” Opt.Eng.39:293–297(1981).
13. J. J. Ding., “Research of Fractional Fourier Transform and Linear Canonical
Transform,” Ph.D. National Taiwan University, Taipei, Taiwan, R.O.C thesis,
2001.
14. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39: 5929–5935 (2000).
15. C. Candan and H. M. Ozaktas, “Sampling and series expansion theorems for
fractional Fourier and other transforms,” Signal Proc. 83: 2455–2457 (2003).
16. A. Stern and B. Javidi, “Sampling in the light of Wigner distribution,” J. Opt.
Soc. Am. A 21: 360–366 (2004).
17. A. Stern and B. Javidi, “Sampling in the light of Wigner distribution: Errata,”
J. Opt. Soc. Am. JOSA A, A 21(9): 1602–1612 (2004).
18. A. Stern and B. Javidi, “Analysis of practical sampling and reconstruction from
Fresnel fields,” Opt. Eng. 43: 239–250 (2004).
19. B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear
canonical transform,” J. Opt. Soc. Am. A 22: 928–937 (2005).
20. A. Stern, “Sampling of linear canonical transformed signals,” Signal Proc. 86:
1421–1425 (2006).
21. B. Deng, R. Tao, and Y. Wang, “Convolution theorems for the linear canonical
transform and their applications,” Science in China (Ser. F, Info. Sci.), 49: 592–603
(2006).
22. A. Stern and B. Javidi, “Improved-resolution digital holography using the gen-
eralized sampling theorem for locally band-limited fields,” J. Opt. Soc. Am. A
23: 1227–1235 (2006).
23. R. T. B. Li and Y. Wang, “New sampling formulae related to linear canonical
transform,” Signal Proc. 86: 983–990 (2007).
24. B. Z. Li, R. Tao, and Y. Wang, “New sampling formulae related to linear canon-
ical transform,” Signal Proc. 87: 983–990 (2007).
25. J. J. Healy and J. T. Sheridan, “Cases where the linear canonical transform of a
signal has compact support or is band-limited,” Opt. Lett. 33: 228–230 (2008).
26. S. A. Collins, “Lens-system diffraction integral written in terms of matrix op-
tics,” J. Opt. Soc. Am. 60: 1168–1177 (1970).
27. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform
with Applications in Optics and Signal Processing. Wiley, Chichester, 2001.
28. K. B. Wolf, “Canonical transforms,” Integral Transforms in Science and Engineer-
ing, K. B. Wolf (ed.), Plenum, New York, 1979, Chap. 9, pp. 381–416.
29. S. Abe and J. T. Sheridan, “Generalization of the fractional Fourier transforma-
tion to an arbitrary linear lossless transformation: An operator approach,” J.
Phys. A 27: 4179–4187 (1994).
30. S. Abe and J. T. Sheridan, “Corrigenda: Generalization of the fractional Fourier
transformation to an arbitrary linear lossless transformation: An operator ap-
proach,” J. Phys. A 27: 7937 (1994).
31. S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian
subgroups of the special affine Fourier transformation,” Opt. Lett. 9: 1801–1803
(1994).
32. S. C. Pei and J. J. Ding, “Eigenfunctions of linear canonical transform,” IEEE
Trans. Signal Proc. 50: 11–26 (2002).
33. S. C. Pei and J. J. Ding, “Generalised eigenvectors and fractionalisation of offset
DFTs and DCTs,” IEEE Trans. Signal Proc. 52: 2032–2046 (2004).
34. J. W. Goodman and R. Lawrence, “Digital image formation from electronically
detected holograms,” Appl. Phys. Lett. 11: 77–79 (1967).
35. L. P. Yaroslavskii and N. S. Merzlyakov. Methods of Digital Holography. Consul-
tants Bureau, New York, 1980.
36. T. M. Kreis, M. Adams, and W. P. O. Juptner, “Methods of digital holography:
A comparison,” Proc. SPIE 3098: 224–233 (1997).
37. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22:
1268–1270 (1997).