Page 63 - Phase Space Optics Fundamentals and Applications
P. 63
44 Chapter One
78. J. Williamson, “On the algebraic problem concerning the normal forms of linear
dynamical systems,” Am. J. Math. 58, 141–163 (1936).
79. K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of
general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12,
560–569 (1995).
80. T. Alieva and M. J. Bastiaans, “Invariants of second-order moments of opti-
cal beams under phase-space rotations,” in ICO-21 Congress Proceedings 2008,
International Commission for Optics ICO 21, Book of Proceedings, Sydney,
Australia, 7–10 July, 2008, p. 103.
81. T. Alieva and M. J. Bastiaans, “Two-dimensional signal representation on the
angular Poincar´e sphere,” in Proc. Topical Meeting on Optoinformatics 2008,
St. Petersburg, Russia.
82. M. J. Bastiaans and T. Alieva, “Wigner distribution moments in fractional
Fourier transform systems,” J. Opt. Soc. Am. A 19, 1763–1773 (2002).
83. G. Nemes and A. E. Siegman, “Measurement of all ten second-order moments
of an astigmatic beam by the use of rotating simple astigmatic (anamorphic)
optics,” J. Opt. Soc. Am. A 11, 2257–2264 (1994).
84. B. Eppich, C. Gao, and H. Weber, “Determination of the ten second order in-
tensity moments,” Opt. Laser Technol. 30, 337–340 (1998).
85. C. Mart´ınez, F. Encinas-Sanz, J. Serna, P. M. Mej´ıas, and R. Mart´ınez-Herrero,
“On the parametric characterization of the transversal spatial structure of laser
pulses,” Opt. Commun. 139, 299–305 (1997).
86. J. Serna, F. Encinas-Sanz, and G. Nemes, “Complete spatial characterization of
a pulsed doughnut-type beam by use of spherical optics and a cylindrical lens,”
J. Opt. Soc. Am. A 18, 1726–1733 (2001).
87. M. J. Bastiaans and T. Alieva, “Wigner distribution moments measured as in-
tensity moments in separable first-order optical systems,” EURASIP J. Appl.
Signal Process. 2005, 1535–1540 (2005).
88. S. R. de Groot and L. G. Suttorp, Foundations of Electrodynamics, North-Holland,
Amsterdam, 1972, Chap. 6.
89. M. J. Bastiaans, T. Alieva, and L. Stankovi´c, “On rotated time-frequency ker-
nels,” IEEE Signal Process. Lett. 9, 378–381 (2002).
90. L. Stankovi´c, “A method for time-frequency analysis,” IEEE Trans. Signal Pro-
cess. 42, 225–229 (1994).
91. W. Koenig, H. K. Dunn, and L. Y. Lacy, “The sound spectrograph,” J. Acoust.
Soc. Am. 18, 19–49 (1946).
92. L. Stankovi´c, T. Alieva, and M. J. Bastiaans, “Time-frequency signal analysis
based on the windowed fractional Fourier transform,” Signal Process. 83, 2459–
2468 (2003).