Page 62 - Phase Space Optics Fundamentals and Applications
P. 62
Wigner Distribution in Optics 43
52. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform
with Applications in Optics and Signal Processing, Wiley, New York, 2001.
53. K. B. Wolf, Geometric Optics on Phase Space, Springer, Berlin, 2004.
54. T. Alieva and M. J. Bastiaans, “On fractional Fourier transform moments,” IEEE
Signal Process. Lett. 7, 320–323 (2000).
55. T. Alieva and M. J. Bastiaans, “Phase-space distributions in quasi-polar coor-
dinates and the fractional Fourier transform,” J. Opt. Soc. Am. A 17, 2324–2329
(2000).
56. T. Alieva, M. J. Bastiaans, and L. Stankovi´c, “Signal reconstruction from two
close fractional Fourier power spectra,” IEEE Trans. Signal Process. 51, 112–123
(2003).
57. M. J. Bastiaans and K. B. Wolf, “Phase reconstruction from intensity measure-
ments in linear systems,” J. Opt. Soc. Am. A 20, 1046–1049 (2003).
58. R. K. Luneburg, Mathematical Theory of Optics, University of California Press,
Berkeley, 1966.
59. G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–
1035 (1972).
60. S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix
optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).
61. M. Moshinsky and C. Quesne, “Linear canonical transformations and their
unitary representations,” J. Math. Phys. 12, 1772–1780 (1971).
62. T. Alieva and M. J. Bastiaans, “Alternative representation of the linear canonical
integral transform,” Opt. Lett. 30, 3302–3304 (2005).
63. O. Bryngdahl, “Geometrical transformations in optics,” J. Opt. Soc. Am. 64,
1092–1099 (1974).
64. J.-Z. Jiao, B. Wang, and H. Liu, “Wigner distribution function and geometrical
transformation,” Appl. Opt. 23, 1249–1254 (1984).
65. A. W. Lohmann, J. Ojeda-Casta˜neda, and N. Streibl, “The influence of wave
aberrations on the Wigner distribution,” Opt. Appl. 13, 465–471 (1983).
66. A. J. E. M. Janssen, “On the locus and spread of pseudo-density functions in
the time-frequency plane,” Philips J. Res. 37, 79–110 (1982).
67. H. Bremmer, “General remarks concerning theories dealing with scattering and
diffraction in random media,” Radio Sci. 8, 511–534 (1973).
68. J. J. McCoy and M. J. Beran, “Propagation of beamed signals through inhomo-
geneous media: A diffraction theory,” J. Acoust. Soc. Am. 59, 1142–1149 (1976).
69. I. M. Besieris and F. D. Tappert, “Stochastic wave-kinetic theory in the Liouville
approximation,” J. Math. Phys. 17, 734–743 (1976).
70. H. Bremmer, “The Wigner distribution and transport equations in radiation
problems,” J. Appl. Science Eng. A 3, 251–260 (1979).
71. M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford, 1975.
72. J. Serna, R. Mart´ınez-Herrero, and P. M. Mej´ıas, “Parametric characterization of
general partially coherent beams propagating through ABCD optical systems,”
J. Opt. Soc. Am. A 8, 1094–1098 (1991).
73. A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Optical vortex symmetry
breakdown and decomposition of the orbital angular momentum of the light
beams,” J. Opt. Soc. Am. A 20, 1635–1643 (2003).
74. T. Alieva and M. J. Bastiaans, “Evolution of the vortex and the asymmetrical
parts of orbital angular momentum in separable first-order optical systems,”
Opt. Lett. 29, 1587–1589 (2004).
75. International Organization for Standardization, Technical Committee /
Subcommittee 172 / SC9, “Lasers and laser-related equipment—test methods
for laser beam parameters—beam widths, divergence angle and beam propa-
gation factor,” ISO Doc. 11146: 1999, International Organization for Standard-
ization, Geneva, Switzerland, 1999.
76. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and
a generalized ABCD-law,” Opt. Commun. 65, 322–328 (1988).
77. M. J. Bastiaans, “Second-order moments of the Wigner distribution function in
first-order optical systems,” Optik 88, 163–168 (1991).