Page 62 - Phase Space Optics Fundamentals and Applications
P. 62

Wigner Distribution in Optics   43


               52. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform
                  with Applications in Optics and Signal Processing, Wiley, New York, 2001.
               53. K. B. Wolf, Geometric Optics on Phase Space, Springer, Berlin, 2004.
               54. T. Alieva and M. J. Bastiaans, “On fractional Fourier transform moments,” IEEE
                  Signal Process. Lett. 7, 320–323 (2000).
               55. T. Alieva and M. J. Bastiaans, “Phase-space distributions in quasi-polar coor-
                  dinates and the fractional Fourier transform,” J. Opt. Soc. Am. A 17, 2324–2329
                  (2000).
               56. T. Alieva, M. J. Bastiaans, and L. Stankovi´c, “Signal reconstruction from two
                  close fractional Fourier power spectra,” IEEE Trans. Signal Process. 51, 112–123
                  (2003).
               57. M. J. Bastiaans and K. B. Wolf, “Phase reconstruction from intensity measure-
                  ments in linear systems,” J. Opt. Soc. Am. A 20, 1046–1049 (2003).
               58. R. K. Luneburg, Mathematical Theory of Optics, University of California Press,
                  Berkeley, 1966.
               59. G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–
                  1035 (1972).
               60. S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix
                  optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).
               61. M. Moshinsky and C. Quesne, “Linear canonical transformations and their
                  unitary representations,” J. Math. Phys. 12, 1772–1780 (1971).
               62. T. Alieva and M. J. Bastiaans, “Alternative representation of the linear canonical
                  integral transform,” Opt. Lett. 30, 3302–3304 (2005).
               63. O. Bryngdahl, “Geometrical transformations in optics,” J. Opt. Soc. Am. 64,
                  1092–1099 (1974).
               64. J.-Z. Jiao, B. Wang, and H. Liu, “Wigner distribution function and geometrical
                  transformation,” Appl. Opt. 23, 1249–1254 (1984).
               65. A. W. Lohmann, J. Ojeda-Casta˜neda, and N. Streibl, “The influence of wave
                  aberrations on the Wigner distribution,” Opt. Appl. 13, 465–471 (1983).
               66. A. J. E. M. Janssen, “On the locus and spread of pseudo-density functions in
                  the time-frequency plane,” Philips J. Res. 37, 79–110 (1982).
               67. H. Bremmer, “General remarks concerning theories dealing with scattering and
                  diffraction in random media,” Radio Sci. 8, 511–534 (1973).
               68. J. J. McCoy and M. J. Beran, “Propagation of beamed signals through inhomo-
                  geneous media: A diffraction theory,” J. Acoust. Soc. Am. 59, 1142–1149 (1976).
               69. I. M. Besieris and F. D. Tappert, “Stochastic wave-kinetic theory in the Liouville
                  approximation,” J. Math. Phys. 17, 734–743 (1976).
               70. H. Bremmer, “The Wigner distribution and transport equations in radiation
                  problems,” J. Appl. Science Eng. A 3, 251–260 (1979).
               71. M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford, 1975.
               72. J. Serna, R. Mart´ınez-Herrero, and P. M. Mej´ıas, “Parametric characterization of
                  general partially coherent beams propagating through ABCD optical systems,”
                  J. Opt. Soc. Am. A 8, 1094–1098 (1991).
               73. A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Optical vortex symmetry
                  breakdown and decomposition of the orbital angular momentum of the light
                  beams,” J. Opt. Soc. Am. A 20, 1635–1643 (2003).
               74. T. Alieva and M. J. Bastiaans, “Evolution of the vortex and the asymmetrical
                  parts of orbital angular momentum in separable first-order optical systems,”
                  Opt. Lett. 29, 1587–1589 (2004).
               75. International Organization for Standardization, Technical Committee /
                  Subcommittee 172 / SC9, “Lasers and laser-related equipment—test methods
                  for laser beam parameters—beam widths, divergence angle and beam propa-
                  gation factor,” ISO Doc. 11146: 1999, International Organization for Standard-
                  ization, Geneva, Switzerland, 1999.
               76. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and
                  a generalized ABCD-law,” Opt. Commun. 65, 322–328 (1988).
               77. M. J. Bastiaans, “Second-order moments of the Wigner distribution function in
                  first-order optical systems,” Optik 88, 163–168 (1991).
   57   58   59   60   61   62   63   64   65   66   67