Page 61 - Phase Space Optics Fundamentals and Applications
P. 61
42 Chapter One
28. F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305
(1980).
29. T. A. C. M. Claasen and W. F. G. Mecklenbr¨auker, “The Wigner Distribution—A
tool for time-frequency signal analysis; Part 1: Continuous-time signals,” Philips
J. Res. 35, 217–250 (1980).
30. L. Cohen, “Time-frequency distributions—A review,” Proc. IEEE 77, 941–981
(1989).
31. F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-
frequency signal representations,” IEEE Signal Processing Magazine 9 (2), 21–67
(1992).
32. L. Cohen, Time-Frequency Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1995.
33. H. W. Lee, “Theory and applications of the quantum phase-space distribution
functions,” Phys. Rep. 259, 147–211 (1995).
34. W. Mecklenbr¨auker and F. Hlawatsch (eds.), The Wigner Distribution—Theory
and Applications in Signal Processing, Elsevier Science, Amsterdam, 1997.
35. D.Dragoman,“TheWignerdistributionfunctioninopticsandoptoelectronics,”
in E. Wolf (ed.), Progress in Optics, Vol. 37, North-Holland, Amsterdam, 1997,
pp. 1–56.
36. B. Boashash (ed.), “Time-Frequency Signal Analysis and Processing: A Comprehen-
sive Reference,” Elsevier, Oxford, UK, 2003; in particular, Part 1: “Introduction
to the concepts of TFSAP.”
37. D. Dragoman, “Applications of the Wigner distribution function in signal pro-
cessing,” EURASIP J. Appl. Signal Process. 2005, 1520–1534 (2005).
38. A. Torre, Linear Ray and Wave Optics in Phase Space, Elsevier, Amsterdam,
2005.
39. M. E. Testorf, J. Ojeda-Casta˜neda, and A. W. Lohmann (eds.), Selected Papers on
Phase-Space Optics, SPIE Milestone Series, vol. MS 181, SPIE, Bellingham, Wash.,
2006.
40. M. J. Bastiaans, “Applications of the Wigner distribution to partially coherent
light beams,” in A. Friberg and R. D¨andliker (eds.), Advances in Information
Optics and Photonics, SPIE, Bellingham, Wash., 2008, pp. 27–56.
41. A. T. Friberg, “On the existence of a radiance function for finite planar sources
of arbitrary states of coherence,” J. Opt. Soc. Am. 69, 192–198 (1979).
42. W. H. Carter and E. Wolf, “Coherence and radiometry with quasi-homogeneous
planar sources,” J. Opt. Soc. Am. 67, 785–796 (1977).
43. E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 6–17 (1978).
44. M. J. Bastiaans, “Wigner distribution function applied to partially coherent
light,” in P. M. Mej´ıas, H. Weber, R. Mart´ınez-Herrero, and A. Gonz´alez-Ure˜na
(eds.), Proceedings of the Workshop on Laser Beam Characterization, SEDO, Madrid,
1993, pp. 65–87.
45. M. J. Bastiaans, “Application of the Wigner distribution function in optics,”
in W. Mecklenbr¨auker and F. Hlawatsch (eds.), The Wigner Distribution—Theory
andApplicationsinSignalProcessing,ElsevierScience,Amsterdam,1997,pp.375–
426.
46. M. J. Bastiaans, “Wigner distribution function applied to twisted Gaussian light
propagating in first-order optical systems,” J. Opt. Soc. Am. A 17, 2475–2480
(2000).
47. R. Winston and W. T. Welford, “Geometrical vector flux and some new non-
imaging concentrators,” J. Opt. Soc. Am. 69, 532–536 (1979).
48. J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Philos.
Soc. 45, 99–132 (1949).
49. A. C. McBride and F. H. Kerr, “On Namias’ fractional Fourier transforms,” IMA
J. Appl. Math. 39, 159–175 (1987).
50. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier
transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
51. R. Simon and K. B. Wolf, “Fractional Fourier transforms in two dimensions,”
J. Opt. Soc. Am. A 17, 2368–2381 (2000).