Page 60 - Phase Space Optics Fundamentals and Applications
P. 60

Wigner Distribution in Optics   41


                3. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968).
                4. A. Walther, “Propagation of the generalized radiance through lenses,” J. Opt.
                  Soc. Am. 68, 1606–1610 (1978).
                5. M. J. Bastiaans, “The Wigner distribution function applied to optical signals
                  and systems,” Opt. Commun. 25, 26–30 (1978).
                6. M. J. Bastiaans, “The Wigner distribution function and Hamilton’s characteris-
                  tics of a geometric-optical system,” Opt. Commun. 30, 321–326 (1979).
                7. M. J. Bastiaans, “Transport equations for the Wigner distribution function,”
                  Opt. Acta 26, 1265–1272 (1979).
                8. M. J. Bastiaans, “Transport equations for the Wigner distribution function in an
                  inhomogeneous and dispersive medium,” Opt. Acta 26, 1333–1344 (1979).
                9. M. J. Bastiaans, “Wigner distribution function and its application to first-order
                  optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
               10. M. J. Bastiaans, “The Wigner distribution function of partially coherent light,”
                  Opt. Acta 28, 1215–1224 (1981).
                11. M. J. Bastiaans, “Application of the Wigner distribution function to partially
                  coherent light,” J. Opt. Soc. Am. A 3, 1227–1238 (1986).
               12. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., McGraw-Hill, New York,
                  1996.
               13. E. Wolf, “A macroscopic theory of interference and diffraction of light from
                  finite sources. I. Fields with a narrow spectral range,” Proc. R. Soc. London Ser.
                  A 225, 96–111 (1954).
               14. E. Wolf, “A macroscopic theory of interference and diffraction of light from
                  finite sources. II. Fields with a spectral range of arbitrary width,” Proc. R. Soc.
                  London Ser. A 230, 246–265 (1955).
               15. A. Papoulis, Systems and Transforms with Applications in Optics, McGraw-Hill,
                  New York, 1968.
               16. M. J. Bastiaans, “A frequency-domain treatment of partial coherence,” Opt. Acta
                  24, 261–274 (1977).
               17. L. Mandel and E. Wolf, “Spectral coherence and the concept of cross-spectral
                  purity,” J. Opt. Soc. Am. 66, 529–535 (1976).
               18. P. M. Woodward, Probability and Information Theory with Applications to Radar,
                  Pergamon, London, 1953, Chap. 7.
               19. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788
                  (1974).
               20. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-
                  model beams: Passage through optical systems and associated invariants,”
                  Phys. Rev. A 31, 2419–2434 (1985).
               21. M. J. Bastiaans, “ABCD law for partially coherent Gaussian light, propagat-
                  ing through first-order optical systems,” Opt. Quant. Electron. 24, 1011–1019
                  (1992).
               22. R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt.
                  Soc. Am. A 10, 95–109 (1993).
               23. R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams.
                  I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–
                  2016 (1993).
               24. K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams.
                  II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10,
                  2017–2023 (1993).
               25. A. T. Friberg, B. Tervonen, and J. Turunen, “Interpretation and experimental
                  demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11,
                  1818–1826 (1994).
               26. D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-
                  model beams: A superposition model,” J. Mod. Opt. 41, 1391–1399 (1994).
               27. A. C. Schell, “A technique for the determination of the radiation pattern of
                  a partially coherent aperture,” IEEE Trans. Antennas Propag. AP-15, 187–188
                  (1967).
   55   56   57   58   59   60   61   62   63   64   65