Page 132 - Plastics Engineering
P. 132

Mechanical Behaviour of Plastics                                115

                substituting from equations (2.73) and (2.74) once again
                                                                 +
                                               =
                        3aoiweW+s) + tlaoeW+s) ~((1 + t2)iw~oe~~~ 41t2&0eiwr
                Dividing across by EOeiwr and letting E* = qei(wr+')/qgid

                then,                 E* = v(t1 + t2)iw + tit2
                                                t1 + tloi
                Multiplying top and bottom by the conjugate of  the denominator, we get

                                 E* = (-532 + 02(h + t2'2)w2) + (t204i
                                                6: + W2V2
                and since E* = El + iE2,

                           storage modulus,  E1  =



                             loss modulus,  E2  =
                                                 _-          t:w
                                                 E2
                                          tans =    -
                                                 E1   ,E%*  + 3201 + h)m2
                  It may be seen in Fig. 2.57 that the variations of E 1,  E2  and tan 6 follow the
                classicai pattern referrid to earlier in this section.


                        2.5


                         2




                     z  1.5
                     g   1
                     w

                        0.5


                         0
                         0.01         0.1          1           10          100
                                                 Log (4
                        Fig. 2.57  Variation of E,, Et and loss tangent for standard linear solid
   127   128   129   130   131   132   133   134   135   136   137