Page 174 - Plastics Engineering
P. 174

Mechanical Behaviour of Plastics                               157

                  Example 2.23 A  series of Charpy impact tests on uPVC specimens with a
                range of crack depths gave the following results

                      Crack length (mm)        1     2      3       4      5
                      Fracture Energy (mJ)   100    62     46.5    37     31
                  If  the  sample section is  10 mm x 10 mm and the support width is 40 mm,
                calculate the  fracture toughness  of  the  uPVC. The modulus  of  the  uPVC  is
                2 GN/m2.
                  Solution Since B = D = 10 mm and using the  values of  0 from Table 2.3
                we may obtain the following information.
                         a(mm)     a/D       0          BD@         UW)
                           1       0.1     0.781     78.1 x  lop6   100
                           2       0.2     0.468     46.8 x          62
                           3       0.3     0.354     35.4 x          46.5
                           4       0.4     0.287     28.7 x          37
                           5       0.5     0.233     23.3 x          31

                  A  graph  of  U  against  BD0  is  given  in  Fig. 2.84. The  slope of  this  gives
                G,  = 1.33 M/m2.
                  Then from equation (2.108) the fracture toughness is given by
                        K, =       = d2 x  lo9 x 1.33 x  lo3 = 1.63 MN m-3/2


                Bibliography
                Throne, J.L. Mechanical properties of thermoplastic structural foams, in Wendle, B.C. (ed.) Engi-
                  neering  Guide to Structural Foams, Technomic, Lancaster, PA, USA (1976) pp. 91 - 114.
                Marshall, G.P. Design for toughness in polymers - Fracture Mechanics, Plastics and Rubber Proc.
                  and Appl. Z(1982) p  169-182.
                Moore, D.R., Hooley, C.J. and Whale, M. Ductility factors for thermoplastics, Plastics and Rubber
                  ROC. and Appl.  l(1981) p  121-127.
                Kinloch, A.J. and Young R.J. Fracture Behaviour of  Polymers, Applied Science, London (1983)
                Williams, J.G. Fracture Mechanics of Polymers, Ellis Honvood, Chicester (1984).
                Andrews, E.H. Developments in Polymer Fracture - 1, Applied Science, London (1979).
                Kausch, H.H.  Polymer Fracture, Springer-Verlag, Berlin (1978).
                Hertzberg, R.W. and Manson, J.A., Fatigue of Engineering Plastics, Academic Press, New York
                  (1980).
                Ogorkiewicz, R.M.  Engineering Properfies of Plastics, Wiley Interscience, London (1970).
                Powell, P.C.  Engineering  with Polymers, Chapman and Hall, London (1983).
                                                           -
                                                 -
                                                     -
                Levy, S. and Dubois, J.H.  Plastics Product Desinn Engineering  Handbook, Van  Nostrand, New
                  York (1977).
                Crawford R.J.  Plastics and Rubber - Engineering  Design and Applications,  MEP Ltd,  London
                  (1985).
                Moore, D.R.,  Couzens, K.H.  and  Iremonger, M.J.,  J.  Cellular  Plastics,  May/June  (1974)
                  pp.  135-139.
                Benham, P.P.,  Crawford, R.J.,  and  Armstrong, C.G., Mechanics of  Engineering  Materials, 2nd
                  Edition, Longmans (1996).
                Sterrett, T. and Miller, E., J. Elastomers and Plastics, 20 (1988) p.  346.
                Young, W.C. Roark’s Formulas for Stress and Strain 5th Edition, McGraw-Hill (1975).
   169   170   171   172   173   174   175   176   177   178   179