Page 448 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 448
Development of polymer nanocomposites 405
[3] Hood SK, Zottola EA. Adherence to stainless steel by food-borne microorganisms during
growth in model food systems. Int J Food Microbiol 1997;37:145–53.
[4] Agarwala M, Barman T, Gogoi D, Choudhury B, Pal AR, Yadav RNS. Highly effective
antibiofilm coating of silver–polymer nanocomposite on polymeric medical devices
deposited by one step plasma process. J Biomed Mater Res B Appl Biomater
2014;102:1223–35.
[5] Santhosh SM, Natarajan K. Antibiofilm activity of epoxy/Ag-TiO2 polymer
nanocomposite coatings against Staphylococcus aureus and Escherichia coli. Coatings
2015;5:95–114.
[6] Cheng H, Xie Y, Villalobos LF, Song L, Peinemann K-V, Nunes S, et al. Antibiofilm
effect enhanced by modification of 1, 2, 3-triazole and palladium nanoparticles on poly-
sulfone membranes. Sci Rep 2016;6:24289.
[7] Akhavan O, Ghaderi E. Self-accumulated Ag nanoparticles on mesoporous TiO 2 thin film
with high bactericidal activities. Surf Coat Technol 2010;204:3676–83.
[8] Hebeish AA, Ramadan MA, Montaser AS, Ahmed Farag M. Preparation characterization
and antibacterial activity of chitosan-g-polyacrylonitrile/silver nanocomposite. Int J Biol
Macromol 2014;68:178–84.
[9] Liu X. Fabrication and characterization of nanocomposite pressure-retarded osmosis
(PRO) membranes with excellent antibiofouling property and enhanced water permeabil-
ity. Desalination 2016; https://doi.org/10.1016/j.desal.2016.01.037.
[10] Kenneth S, Brandenburg MS, Diego F, Calderon DVM, Patricia R, Kierski BA, et al. Inhi-
bition of Pseudomonas aeruginosa biofilm formation on wound dressings. Wound Repair
Regen 2015; https://doi.org/10.1111/wrr.12365.
[11] Sawant SN, Selvaraj V, Prabhawathi V, Doble M. Antibiofilm properties of silver and gold
incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions.
PLoS One 2013;8(5).
[12] Ahire JJ, Hattingh M, Neveling DP, Dicks LMT. Copper-containing anti-biofilm
nanofiber scaffolds as a wound dressing material. PLoS One 2016;30: https://doi.org/
10.1371/journal.pone.0152755.
[13] Christensen GD, Simpson WA, Younger JA, Baddour LM, Barrett FF, Melton DM. Adher-
ence of coagulase-negative Staphylococci to plastic tissue cultures: a quantitative model for
the adherence of Staphylococci to medical devices. J Clin Microbial 1985;22:996–1006.
[14] Patidar RK, Gupta MK, Dwivedi D, Singh V. In vitro biofilm formation potential and anti-
microbial sensitivity of Streptococcus mutans clinical isolates. J Pharm Res 2012;2:551–7.
[15] Muthulakshmi L, Rajini N, Varada Rajalu A, Siengchin S, Kathiresan T. Synthesis and
characterization of cellulose/silver nanocomposites from bioflocculant reducing agent.
Int J Biol Macromol 2017;103:1113–20.
[16] Rhim JW, Wang LF, Hong SI. Preparation and characterization of agar/silver nanoparticle
composite films with antimicrobial activity. Food Hydrocoll 2013;33:327–35.
[17] Sadanand V, Rajini N, Satyanarayana B, Varada Rajulu A. Preparation of cellulose com-
posites with in situ generated copper nanoparticles using leaf extract and their properties.
Carbohydr Polym 2016;150:30–9.
[18] Singh S, Asthana AK, Madan M, Ghosh SJ. Study of biofilm formation among clinical
staphylococcal isolates. Natl J Lab Med 2015;4:24–7.
[19] Saify H, Patidar RK, Khare M, Sahare KN, Singh V. Difference in biofilm development
capability of vancomycin and ciprofloxacin resistant Staphylococcus aureus clinical iso-
lates. Res J Infect Dis 2013;2052–5958.
[20] Ansari MA, Khan HM, Khan AA, Cameotra SS, Pal R. Antibiofilm efficacy of silver
nanoparticles against biofilm of extended spectrum b-lactamase isolates of Escherichia
coli and Klebsiella pneumonia. Appl Nanosci 2014;4:859–68.

