Page 224 - Practical Design Ships and Floating Structures
P. 224

199

                                                           TABLE 1
                                                NUMERICAL DATA FOR COMBINED MODEL

                                                Breadth B
                                                Lineardcnsltyofmnbody pe   3 713   IO kgh
                                                Horizontal bending ngdity  EI   I  090   IO Nm
                                                Shearing ngdity  k  CA   2377   in  Nm




                                                Distanceofthemarntlngpointof  845  37 50  6655 m
                                                  foundation spnng (xl,2,3)
                                                 Spnngngidity(kl,Z,3)  XI08   934  1149  1934  N/m
                                                  Height of dolphin  H   22 5   m
                                                   Penehahon depth  h   75 0   m
                      + + PanhmdDdphur,
                         -4%   .4&qkiLmd3       Linear density of dolphin   A , 5 62 X IO4   hdm
        Figure1  Combined model composed of     Bendingngidityofdolphin EI,  6 70X 1013   Nm 2
               VLFS and mooring system           Rigdity of fendcr rod for weak   I  35 x I07   Nlm
                                                      moonng
                                                 Clearance behwen fender and   0 4   m
                                                      StrUCbve

      Let us assume a solution in the form
              Vi(X,t)  = 0 j(x)cos( wit)
                                                                      (3)

      where  Q, , (x)  is the modes functions,  wI is the eigen circular frequency.
      By  introducing Eq.  3  into Eq.  2,  and  satisfying the  boundary conditions, we  obtain  the  ordinary
      eigenvalue equation as following





      The resulting eigenvalue is given by the following
                                k4
             a4 +[(a2 +p2)w: -r2]a2 -(+w;  +a2PZw~w~ -a2p2~; -k;)=o
                                w0                                    (5)
      Hence, we conclude the solution
                              I  2  2  1  1  1
            I-cos(  l,L)cosh( L,L)=(L1s2s3 -L2sis4 ) sinh(  L, L ) sin( 1, L)
                              2L,l*s, SIS3S4
            I-cos(  L,L)W)S( L,L)=(  '   ) sin( L L ) sin(  t I L )
                             /I*s2s* + n:s:s:
                              2l,L*st SlS3SI
      where     = A:  + 6,   s2 = A:  - 6,   s3 = a:  + 6,   s4 = a:  -6,
      The detailed theoretic eigenvalue  o  can be calculated through the Eq.6 or Eq.7 and the results are
      tabulated in Table 3. As comparison, we also give the values obtained by  the FEM methods in the
      same table.

      3  FREQUENCY RESPONSE BEHAVIOR OF HORIZONTAL DEFLECTION
   219   220   221   222   223   224   225   226   227   228   229