Page 279 - Practical Design Ships and Floating Structures
P. 279

254

             by McTaggart (1998). The present paper describes a methodology for evaluating the risk with respect
             to cargo shifting. The risk is defined as the probability that at least one cargo unit will  start to shift
             during a given time period. This probability is called the risk of inirial cargo shiji, and can be seen as a
             criterion for safe operation. This paper describes the methodology, which combines models  for the
             interaction between waves, ship and cargo with statistical methods. Some case studies are included in
             order to evaluate the methodology and to show the influence of different parameters.


             2  THE METHODOLOGY
             Cargo shifting is a complex phenomenon, caused by the ship motions and largely influenced by  the
             properties of cargo and lashings as well as operational aspects.  During  its time  at sea a ship will
             encounter a large number of different conditions, defined by sea state, ship heading towards the waves,
             ship speed and loading condition. In each such condition the ship motions will be different and thereby
             also the forces acting on the cargo. Thus the probability of cargo shifting will differ in the various
             conditions. In order to estimate the total risk of cargo shifting during a year, or the ship’s lifetime, the
             probability of shifting must be calculated in all conditions the ship will encounter during that time. In
             each condition the waves will have specific statistical properties and the ship will move in a certain
             way in response to these waves.  These motions will induce forces on the cargo, which will shift if
             these forces are larger than what the cargo and its lashings can withstand. The total risk will depend on
             the probability of  shifting in each condition and the probability that the  ship will encounter each
             specific condition, as well as time. This section describes the cargo model used, and how the forces
             acting on the cargo are calculated from the ship motion response to waves. Further, a description is
              given of the statistical methods used for estimating the risk of shifting in a specific condition as well as
             the total risk. A thorough description of the methodology has been given by Ericson et al. (1999).

             2.1  Cargo Model
              A  purely twodimensional  model  of  a  cargo unit  is  used.  This means  that  all  forces act  in  the
             transversal plane  of the  ship, and that the pre-tensions in the lashings on each side are equal  (see
              Figure  1).  The cargo is assumed to be rigid, which means the lashing forces will be equal to the pre-
             tension until the cargo shifts. Shifting is defined as an initial motion, either by sliding or tipping. Thus,
              the risk  presented  is the risk  of at  least  one initial motion  of  one cargo unit.  For the case  studies
              presented in this paper a model of a container is used. This container model is shown in Figure 1. The
              forces F and N are the forces corresponding to the combined effects of the ship motions, as described
              in the section
              2.2  Ship Motion Induced Forces. If these forces are large enough in comparison to the pre-tensions
              and the friction, they will cause the cargo to shift. The tipping mode is neglected herein, since it can be
              shown that sliding is the critical mode for the studied type of cargo, see Ericson (2000). Sliding will
              occur if the total horizontal force is positive, that is if
                                     F-F,  -2.(F,  -F,).sincp>O.                     (1)
              The friction force (Ff) is found from vertical  equilibrium, and the relation Ff = ~FN, where p is the
              coefficient of friction. This means the friction force can be written as
                                    F,  =p(N+2*(F, +F,)*cosc~).                      (2)
             Note that the friction force always acts in the opposite direction to the force F. Accounting for this and
              inserting the relation for the friction force from Eqn. (2) into Eqn. (I),  gives the expression:
                         Iq - p(N + 2. cos cp . (F, + F2)) - 2. sin cp  (F, - F2) - sign(F) > 0.   (3)
              It should also be noted that in the methodology described herein, any cargo model can be used. For
             each cargo type an appropriate model should be used, taking into account its specific characteristics.
   274   275   276   277   278   279   280   281   282   283   284