Page 84 - Pressure Swing Adsorption
P. 84

,,
                                                                                 ,,  .
 58   PRESS I iRE SWING ADSORPTION   FUNDAMENTALS  OF ADSORPTION         59
 Table 2.10.  Mathematical Model for an Adsorption Column
                  LO
                       ·'-',~~
 Differc,111;11
 h.ilanct"  for                                - -          fJ=  0.713
                  0.8                         ,
 fluid  phase:               "'¾,.
                               ':,__
 •'I'
 D!. = 0 fnr plug Jlow:  ii  = 0 for trace .svsiem
                  0.6
 ,1T  '[   ('-')  ]"T                       ,= 7.5
 Heat baiance:   l'Cgilz  +  cg+  -,- Cs  iii   c/co
                                      . '
                  0.4
 = (-illll( !  -. ')'1q  -  4h(T- 'f)   7   '  - --
 F   rlt   --;"J   0
 Initial conditions:   Adsorption,   ij(z,0)=0,   c(O,t)=O:   1/   - - --
 Desorpt10n,   ij(z,0) = q 0 ,   c(0,1) = 0   0.2   1/
                                1/
 Equilibnum:   Linear.   q*  = Kc:.   Langmuir,
 l.  Linear rate modeis   2.  Solid diffusion   .,_   Pore diffusion
                  0.8
 a.  Fluid film  resistance
 ii(!   3kr   ,.   cJc   rlZi
 aj"=y(c-c)   Ep J/ + (\  - Er,)7it   0.6
 "
 =  €~" :n(R2~#)   clco
                  0.4
 L  D,,  = constant   DP  constunt
 ii.  D~  = Du(!  - q/t/5)-  1
 b.  Solid  film res1slance
                   0.2
 ,l(/
 7ii.  = k(q•  - ij)   q(r,O) = Oor,1 0   [j{r, 0) = 0 or lfo   ---
 q(r,:, i  - z/v) = q*(z, t)   ij(Rr,. f  -- z/1·) = q*(z, r)
 ilq   8q
 a,W,t-z/u)=O   aRW,t) - 0                                        ,
                                                                 ,
 2
 li=q=  l.Jr"qr dr   - ii= - 3  f "'1 l;(l  ~f:o  )
 ,;.'  0   R~  o   ·                                           '  /  C=  15
 2
 +tpc!R dR                                                     '
                                                              '  '
                                                              '
               clco                                          '
                   0.4
 an  addit10nal  differentml  equation with  associated  boundary conditions.  For   '  '
 many  different  boundary  conditions  diffusion"controllect  kinetics  may  be
 satisfactorily  represented  by  the  so"called  "linear  driving  force"  (LDF)  ex-  0.2
 pression:
 (2.57)

 where  k  ~ 15D,/R  2   The validity of tlus  approx1mauon,  first  mtroduced  by   Figure 2.25  Thcorct1c1.1l  breakthrough  curvt..:s  calculated  for  a  nonlinear O ,;ingmuH)
            system  showmg  the  comparison  between  the  LDF  model  (--),  the  macropore
 Glueckauf, 52   has  been  confirmed  for  many  different  mit1al  and  boundary   diffusion  model(----),  and  the  mtracrvsiallinc  diffus1on ·model  (--·),based 011  the
 conditions.  Its  applicability  to  a  snnple  Langmuir  system  is  illustrated  m   Glueckauf approximation.  k =  l5De /  R , r =kt, { = kq :z0 - d_/ cl'<.'w  For mtracrvs-
                                          2
                                                      0
                              2
 Figure 2.25.  It ,s evident that with the time constant defined  in  an  appropn-  talline  diffusmn  De/R =Dc/1};  for  mncropore  diff\ls1on  De/R-=EPDl'/lEP+
                                   0
 ate  manner, the LDF approximation  provides  a  reasonable prediction of the   (1-Er>)dq*/dclR!. {3=  1-q /qs. (From  Ruthven,t  with  oernuss1onJ
 breakthrough curves over a wide range of conditions. It  1s at its best when the
   79   80   81   82   83   84   85   86   87   88   89