Page 83 - Pressure Swing Adsorption
P. 83

,,
                                                                                                                                                                     ,,  .
              58                                    PRESS I iRE SWING ADSORPTION               FUNDAMENTALS  OF ADSORPTION                                   59
              Table 2.10.  Mathematical Model for an Adsorption Column
                                                                                                      LO
                                                                                                           ·'-',~~
                  Differc,111;11
                   h.ilanct"  for                                                                                                  - -           fJ=  0.713
                                                                                                      0.8                         ,
                   fluid  phase:                                                                                  "'¾,.
                                                                                                                   ':,__
                                                       •'I'
                                         D!. = 0 fnr plug Jlow:  ii  = 0 for trace .svsiem
                                                                                                      0.6
                                           ,1T  '[   ('-')  ]"T                                                                 ,= 7.5
                 Heat baiance:           l'Cgilz  +  cg+  -,- Cs  iii                             c/co
                                                                                                                          . '
                                                                                                      0.4
                                         = (-illll( !  -. ')'1q  -  4h(T- 'f)                                            7   '  - --
                                                  F   rlt   --;"J   0
                  Initial conditions:    Adsorption,   ij(z,0)=0,   c(O,t)=O:                                           1/       - - --
                                         Desorpt10n,   ij(z,0) = q 0 ,   c(0,1) = 0                   0.2             1/
                                                                                                                    1/
                 Equilibnum:             Linear.   q*  = Kc:.   Langmuir,
                  l.  Linear rate modeis   2.  Solid diffusion   .,_   Pore diffusion
                                                                                                      0.8
                  a.  Fluid film  resistance
                    ii(!   3kr   ,.                           cJc       rlZi
                    aj"=y(c-c)                               Ep J/ + (\  - Er,)7it                     0.6
                          "
                                                             =  €~" :n(R2~#)                       clco
                                                                                                       0.4
                                        L  D,,  = constant   DP  constunt
                                        ii.  D~  = Du(!  - q/t/5)-  1
                  b.  Solid  film res1slance
                                                                                                       0.2
                     ,l(/
                     7ii.  = k(q•  - ij)   q(r,O) = Oor,1 0   [j{r, 0) = 0 or lfo                                                                 ---
                                        q(r,:, i  - z/v) = q*(z, t)   ij(Rr,. f  -- z/1·) = q*(z, r)
                                        ilq                  8q
                                        a,W,t-z/u)=O         aRW,t) - 0                                                                               ,
                                                                                                                                                     ,
                                                    2
                                        li=q=  l.Jr"qr dr    - ii= -  3  f "'1 l;(l  ~f:o  )
                                              ,;.'  0           R~  o      ·                                                                       '  /  C=  15
                                                                           2
                                                                      +tpc!R dR                                                                    '
                                                                                                                                                   '  '
                                                                                                                                                  '
                                                                                                   clco                                           '
                                                                                                       0.4
               an  addit10nal  differentml  equation with  associated  boundary conditions.  For                                                '  '
               many  different  boundary  conditions  diffusion"controllect  kinetics  may  be
               satisfactorily  represented  by  the  so"called  "linear  driving  force"  (LDF)  ex-   0.2
               pression:
                                                                         (2.57)

               where  k  ~ 15D,/R  2   The validity of tlus  approx1mauon,  first  mtroduced  by   Figure 2.25  Thcorct1c1.1l  breakthrough  curvt..:s  calculated  for  a  nonlinear O ,;ingmuH)
                                                                                                 system  showmg  the  comparison  between  the  LDF  model  (--),  the  macropore
               Glueckauf, 52   has  been  confirmed  for  many  different  mit1al  and  boundary   diffusion  model(----),  and  the  mtracrvsiallinc  diffus1on ·model  (--·),based 011  the
               conditions.  Its  applicability  to  a  snnple  Langmuir  system  is  illustrated  m   Glueckauf approximation.  k =  l5De /  R , r =kt, { = kq :z0 - d_/ cl'<.'w  For mtracrvs-
                                                                                                                              2
                                                                                                                                          0
                                                                                                                   2
               Figure 2.25.  It ,s evident that with the time constant defined  in  an  appropn-  talline  diffusmn  De/R =Dc/1};  for  mncropore  diff\ls1on  De/R-=EPDl'/lEP+
                                                                                                                       0
               ate  manner, the LDF approximation  provides  a  reasonable prediction of the     (1-Er>)dq*/dclR!. {3=  1-q /qs. (From  Ruthven,t  with  oernuss1onJ
               breakthrough curves over a wide range of conditions. It  1s at its best when the
   78   79   80   81   82   83   84   85   86   87   88