Page 9 - Principles and Applications of NanoMEMS Physics
P. 9
ix
3.1.2 Quantum Resonance Tunneling 84
3.1.3 Quantum Interference 88
3.1.3.1 Aharonov-Bohm Effect 88
3.1.4 Quantum Transport Theory 89
3.1.4.1 Quantized Heat Flow 89
3.1.4.2 Fermi Liquids and Lüttinger Liquids 90
3.1.4.2.1 Fermi Gas 91
3.1.4.2.2 Fermi Liquids 95
3.1.4.2.3 Lüttinger Liquids 100
3.2 Wave Behavior in Periodic and Aperiodic Media 105
3.2.1 Electronic Band-Gap Crystals 105
3.2.1.1 Carbon Nanotubes 105
3.2.1.2 Superconductors 112
3.2.1.2.1 Superfluidity 113
3.2.1.2.2 Superconductivity 121
3.2.2 Photonic Band-Gap Crystals 134
3.2.2.1 One-Dimensional PBC Physics 134
3.2.2.2 Multi-Dimensional PBC Physics 138
3.2.2.2.1 General Properties of PBCs 139
3.2.2.3 Advanced PBC Structures 141
3.2.2.3.1 Negative Refraction and Perfect Lenses 142
3.2.3 Cavity Quantum Electrodynamics 145
3.3 Summary 148
4. NANOMEMS APPLICATIONS: CIRCUITS AND SYSTEMS 149
4.1 Introduction 149
4.2 NanoMEMS Systems on Chip 149
4.2.1 NanoMEMS SoC Architectures 150
4.2.2 NanoMEMS SoC Building Blocks 151
4.2.2.1 Interfaces 151
4.2.2.2 Emerging Signal Processing Building Blocks 152
4.2.2.2.1 Charge Detector 153
4.2.2.2.2 Which-Path Electron Interferometer 154
4.2.2.2.3 Parametric Amplification in Torsional
MEM Resonator 155
4.2.2.2.4 Casimir Effect Oscillator 156
4.2.2.2.5 Magnetomechanically Actuated Beams 157
4.2.2.2.6 Systems—Functional Arrays 158
4.2.2.2.7 Noise—Quantum Squeezing 158
4.2.2.2.8 Nanomechanical Laser 159
4.2.2.2.9 Quantum Entanglement Generation 160