Page 8 - Principles and Applications of NanoMEMS Physics
P. 8
viii Contents
1.2.3.2 Soft Lithography 24
1.2.3.3 Molecular Beam Epitaxy 27
1.2.3.4 Scanning Probe Microscopy 29
1.2.3.4.1 Scanning Tunneling Microscope 30
1.2.3.4.2 Atomic Force Microscopy 31
1.2.3.5 Carbon Nanotubes 36
1.2.3.6 Nanomanipulation 37
1.2.3.6.1 AFM-based Nanomanipulation 38
1.2.3.6.2 DIP-Pen Lithography 38
1.3 Summary 39
2. NANOMEMS PHYSICS: QUANTUM WAVE-PARTICLE 41
PHENOMENA
2.1 Introduction 41
2.2 Manifestation of Charge Discreteness 42
2.2.1 Effects of Charge Discreteness in Transmission Lines 42
2.2.1.1 Inductive Transmission Line Behavior 48
2.2.1.2 Capacitive Transmission Line Behavior 50
2.2.2 Effects of Charge Discreteness in Electrostatic Actuation 51
2.2.2.1 Fundamental Electrostatic Actuation 51
2.2.2.1.1 Large-signal Actuation—Switch 52
2.2.2.1.2 Small-signal Actuation—Resonator 52
2.2.2.2 Coulomb Blockade 53
2.2.3 Single Electron Tunneling 56
2.2.3.1 Quantum Dots 56
2.2.4 Quantized Electrostatic Actuation 58
2.3 Manifestation of Quantum Electrodynamical Forces 60
2.3.1 van der Waals Force 60
2.3.2 Casimir Force 62
2.4 Quantum Information Theory, Computing and Communications 66
2.4.1 Quantum Entanglement 67
2.4.1.1 Einstein-Podolsky-Rosen (EPR) State 69
2.4.1.2 Quantum Gates 70
2.4.2 Quantum Teleportation 73
2.4.3 Decoherence 76
2.5 Summary 77
3. NANOMEMS PHYSICS: QUANTUM WAVE PHENOMENA 79
3.1 Manifestation of Wave Nature of Electrons 79
3.1.1 Quantization of Electrical Conductance 80
3.1.1.1 Landauer Formula 80
3.1.1.2 Quantum Point Contacts 82