Page 71 - Probability and Statistical Inference
P. 71

48    1. Notions of Probability

                                 denoted by F  , if and only if its pdf is given by
                                            ν1, ν2





                                 with                                                       . Here,
                                 ν  and ν  are referred to as the parameters. By varying the values of ν  and ν ,
                                        2
                                  1
                                                                                                2
                                                                                           1
                                 one can generate interesting shapes for this pdf.















                                               Figure 1.7.10. F Densities: (a) F  and F
                                                                          1, 1   1, 5
                                                           (b) F  and F
                                                               4, 5   3, 4

                                    The pdf from (1.7.34) has been plotted in the Figure 1.7.10 when we fix (ν ,
                                                                                                 1
                                 ν ) = (1, 1), (1, 5), (4, 5), (3, 4). One realizes that the F distribution is skewed
                                  2
                                 to the right.
                                    The Beta Distribution: Recall the expression Γ(α), the beta function b(α,
                                 β), and that b(α, β) = Γ(α)Γ(β){Γ(α + β)}  respectively from (1.6.19), (1.6.25)-
                                                                   –1
                                 (1.6.26). A continuous random variable X, defined on the interval (0, 1), has
                                 the beta distribution with parameters α and β, denoted by Beta(α, β), if and
                                 only if its pdf is given by




                                 where 0 < α, β < ∞. By varying the values of α and β, one can generate
                                 interesting shapes for this pdf. In general, the Beta distributions are fairly
                                 skewed when α ≠ β. The beta pdf from (1.7.35) has been plotted in the
                                 Figure 1.7.11 for (α, β) = (2, 5), (4, 5). The pdf in the Figure 1.7.11 (b),
                                 however, looks almost symmetric. It is a simple matter to verify that a
                                 random variable distributed as Beta(1, 1) is equivalent to the Uniform(0, 1)
   66   67   68   69   70   71   72   73   74   75   76