Page 131 - Process Modelling and Simulation With Finite Element Methods
P. 131

11         P Process Modelling and Simulation with Finite Element Methods












                            Table 3.1  Specific gravity of liquid water.

          So what does one of these expansivity functions look like? See Figure 3.4 below.4 below.


                 -.-,ILL .                 ~~
                        -'3%     320     340    360

              -0.01

              -0.02   '


              -0.03

              -0.04

                                    P(T)-Po
                    Figure 3.4 Expansivity  ___  vs. Temperature (K)  for water.
                                       Po

          Next, how do we organize this data so as to use it in the FEMLAB GUI?  You
          should  find  the  m-file  watrdemm,  which  is  a  MATLAB  function  m-file  that
          interpolates  using  cubic  splines  within  Table  3.1  to  find  the  dimensionless
          expansivity factor.  This m-file is reproduced here:

          function a=watrdens(ttemp)
          %WATRDENS  Interpolates the  expansivity of  water  in  273  and  373
          deg K
          temp=[O 3.98 5 10 15 18 20 25 30 35 38 40 45 50 55 60 65 70 75 80
          85 90 95 1001;
          dens=[0.99987 1.  0.99993 0.99973  0.39913 0.99862 0.99823 0,99707
          0.99567 0.99406 0.99299 0.99224 0.99025 ...
          0.98807  0.98573  0.98324  0.98059  0.97781 0.97489  0.97183  0.96865
          0.96534 0.96192 0.958381  ;
          temp=temp+273;
          dens= (dens-dens  (1) )/dens (1) ;
          a=interpl (temp,dens,ttemp, 'spline')
                                           ;
   126   127   128   129   130   131   132   133   134   135   136