Page 14 -
P. 14

Contents



















            1   Introduction ................................                1
                1.1 Data Explosion ............................              1
                1.2 Limitations of Modeling .......................          3
                1.3 Process Mining  ...........................              7
                1.4 Analyzing an Example Log .....................          11
                1.5 Play-in, Play-out, and Replay ....................      18
                1.6 Trends . . . .............................              21
                1.7 Outlook ...............................                 23

            Part I  Preliminaries
            2   Process Modeling and Analysis .....................         29
                2.1 The Art of Modeling .........................           29
                2.2 Process Models ...........................              31
                    2.2.1  Transition Systems . . . ...................     31
                    2.2.2  Petri Nets ..........................            33
                    2.2.3  Workflow Nets ........................            38
                    2.2.4  YAWL ............................                40
                    2.2.5  Business Process Modeling Notation (BPMN) .......  42
                    2.2.6  Event-Driven Process Chains (EPCs) . . . .........  44
                    2.2.7  Causal Nets .........................            46
                2.3 Model-Based Process Analysis ...................        52
                    2.3.1  Verification ..........................           52
                    2.3.2  Performance Analysis . ...................       55
                    2.3.3  Limitations of Model-Based Analysis . . . .........  57
            3   Data Mining ................................                59
                3.1 Classification of Data Mining Techniques ..............  59
                    3.1.1  Data Sets: Instances and Variables .............  60
                    3.1.2  Supervised Learning: Classification and Regression ....  62
                    3.1.3  Unsupervised Learning: Clustering and Pattern Discovery .  64
                3.2 Decision Tree Learning .......................          64
                                                                            xiii
   9   10   11   12   13   14   15   16   17   18   19