Page 15 -
P. 15

xiv                                                         Contents

                3.3  k-Means Clustering .........................           70
                3.4 Association Rule Learning ......................        74
                3.5 Sequence and Episode Mining . ...................       77
                    3.5.1  Sequence Mining . . . ...................        77
                    3.5.2  Episode Mining .......................           78
                    3.5.3  Other Approaches . . . ...................       81
                3.6 Quality of Resulting Models . . ...................     82
                    3.6.1  Measuring the Performance of a Classifier .........  83
                    3.6.2  Cross-Validation .......................         85
                    3.6.3  Occam’s Razor ........................           88

            Part II  From Event Logs to Process Models
            4   Getting the Data .............................              95
                4.1 Data Sources .............................              95
                4.2 Event Logs ..............................               98
                4.3 XES ................................. 107
                4.4 Flattening Reality into Event Logs ................. 114
            5   Process Discovery: An Introduction ................... 125
                5.1 Problem Statement .......................... 125
                5.2 A Simple Algorithm for Process Discovery ............. 129
                    5.2.1  Basic Idea .......................... 129
                    5.2.2  Algorithm .......................... 133
                    5.2.3  Limitations of the α-Algorithm ............... 136
                    5.2.4  Taking the Transactional Life-Cycle into Account ..... 139
                5.3 Rediscovering Process Models ................... 140
                5.4 Challenges . ............................. 144
                    5.4.1  Representational Bias . ................... 145
                    5.4.2  Noise and Incompleteness .................. 147
                    5.4.3  Four Competing Quality Criteria .............. 150
                    5.4.4  Taking the Right 2-D Slice of a 3-D Reality ........ 153
            6   Advanced Process Discovery Techniques ................ 157
                6.1 Overview . .............................. 157
                    6.1.1  Characteristic 1: Representational Bias . . ......... 159
                    6.1.2  Characteristic 2: Ability to Deal with Noise ......... 160
                    6.1.3  Characteristic 3: Completeness Notion Assumed ...... 161
                    6.1.4  Characteristic 4: Approach Used .............. 161
                6.2 Heuristic Mining ........................... 163
                    6.2.1  Causal Nets Revisited . ................... 163
                    6.2.2  Learning the Dependency Graph .............. 164
                    6.2.3  Learning Splits and Joins .................. 167
                6.3 Genetic Process Mining ....................... 169
                6.4 Region-Based Mining ........................ 173
                    6.4.1  Learning Transition Systems ................ 174
                    6.4.2  Process Discovery Using State-Based Regions ....... 177
   10   11   12   13   14   15   16   17   18   19   20