Page 135 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 135

Application of heterogeneous acid catalyst derived from biomass for biodiesel process  105

           References


           Akinfalabi, S., et al., 2017. Synthesis of biodiesel from palm fatty acid distillate using sulfo-
               nated palm seed cake catalyst. Renewable Energy 111, 611 619.
           Amani, H., et al., 2014. Transesterification of waste cooking palm oil by MnZr with sup-
               ported alumina as a potential heterogeneous catalyst. J. Ind. Eng. Chem. 20 (6),
               4437 4442. Available from: https://doi.org/10.1016/j.jiec.2014.02.012.
           Arancon, R.A., et al., 2011. Valorisation of corncob residues to functionalised porous carbo-
               naceous materials for the simultaneous esterification/transesterification of waste oils.
               Green Chem. 13, 3162 3167. Available from: https://doi.org/10.1039/c1gc15908a.
           Atadashi, I.M., et al., 2012. Production of biodiesel using high free fatty acid feedstocks.
               Renewable Sustainable Energy Rev. 16 (5), 3275 3285. Available from: https://doi.org/
               10.1016/j.rser.2012.02.063.
           Balat, M., Balat, H., 2010. Progress in biodiesel processing. Appl. Energy 87 (6),
               1815 1835. Available from: https://doi.org/10.1016/j.apenergy.2010.01.012.
           Barnwal, B.K., Sharma, M.P., 2005. Prospects of biodiesel production from vegetable oils in
               India. Renewable Sustainable Energy Rev. 9 (4), 363 378.
           Boehm, H.P., 1966. Chemical identification of surface groups. Adv. Catal. 16 (C), 179 274.
               Available from: https://doi.org/10.1016/S0360-0564(08)60354-5.
           Boehm, H.P., 2002. Surface oxides on carbon and their analysis: a critical assessment.
               Carbon 40 (2), 145 149. Available from: https://doi.org/10.1016/S0008-6223(01)
               00165-8.
           Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers. J.
               Am. Chem. Soc. 60 (2), 309 319. Available from: https://doi.org/10.1021/ja01269a023.
           Caetano, C.S., et al., 2009. Esterification of fatty acids to biodiesel over polymers with sul-
               fonic acid groups. Appl. Catal., A: Gen. 359 (1 2), 41 46. Available from: https://doi.
               org/10.1016/j.apcata.2009.02.028.
           Canakci, M., Gerpen, J.V., 2001. A pilot plant to produce biodiesel from high free fatty acid
               feedstocks (01-6049). ASAE Annual International Meeting. American Society of
               Agricultural Engineers, California, USA, pp. 1 19. Available from: https://doi.org/
               10.13031/2013.4209.
           Carlini, M., Castellucci, S., Cocchi, S., 2014. A pilot-scale study of waste vegetable oil trans-
               esterification with alkaline and acidic catalysts. Energy Procedia 45, 198 206.
               Available from: https://doi.org/10.1016/j.egypro.2014.01.022.
           Chin, L.H., Abdullah, A.Z., Hameed, B.H., 2012. Sugar cane bagasse as solid catalyst for
               synthesis of methyl esters from palm fatty acid distillate. Chem. Eng. J. 183, 104 107.
           Dawodu, F.A., et al., 2014. Application of solid acid catalyst derived from low value biomass
               for a cheaper biodiesel production. J. Chem. Technol. Biotechnol. 89 (12), 1898 1909.
               Available from: https://doi.org/10.1002/jctb.4274.
           Dehkhoda, A.M., West, A.H., Ellis, N., 2010. Biochar based solid acid catalyst for biodiesel
               production. Appl. Catal., A: Gen. 382 (2), 197 204.
           Devi, B.L.A.P., et al., 2014. A green recyclable SO 3 H carbon catalyst derived from glycerol
               for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a
               single step. Bioresour. Technol. 153, 370 373. Available from: https://doi.org/10.1016/
               j.biortech.2013.12.002.
           Egerton, R.F., 2005. Physical Principles of Electron Microscopy: An Introduction to TEM,
               SEM, and AEM, 2nd edn Springer International Publishing, Cham, Switzerland.
               Available from: https://doi.org/10.1007/978-3-319-39877-8.
   130   131   132   133   134   135   136   137   138   139   140