Page 136 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 136
106 Refining Biomass Residues for Sustainable Energy and Bioproducts
Endut, A., et al., 2017. Optimization of biodiesel production by solid acid catalyst derived
from coconut shell via response surface methodology. Int. Biodeterior. Biodegrad. 124,
250 257.
Fang, Z., et al., 2004. Liquefaction and gasification of cellulose with Na 2 CO 3 and Ni in sub-
critical water at 350 C. Ind. Eng. Chem. Res. 43 (10), 2454 2463.
Fu, X., et al., 2013. A microalgae residue based carbon solid acid catalyst for biodiesel pro-
duction. Bioresour. Technol. 146, 767 770. Available from: https://doi.org/10.1016/j.
biortech.2013.07.117.
Gao, Z., et al., 2015. Efficient mesoporous carbon-based solid catalyst for the esterification
of oleic acid. Fuel 140, 669 676. Available from: https://doi.org/10.1016/j.
fuel.2014.10.012.
Gopal, K.N., et al., 2014. Investigation of emissions and combustion characteristics of a CI
engine fueled with waste cooking oil methyl ester and diesel blends. Alexandria Eng. J.
53 (2), 281 287. Available from: https://doi.org/10.1016/j.aej.2014.02.003.
Guo, F., Xiu, Z.L., Liang, Z.X., 2012. Synthesis of biodiesel from acidified soybean soap-
stock using a lignin-derived carbonaceous catalyst. Appl. Energy 98, 47 52.
Guo, M.L., Yin, X.Y., Huang, J., 2017. Preparation of novel carbonaceous solid acids from
rice husk and phenol. Mater. Lett. 196, 23 25.
Hara, M., 2010. Biodiesel production by amorphous carbon bearing SO 3 H, COOH and phe-
nolic OH groups, a solid Bronsted acid catalyst. Top. Catal. 53 (11 12), 805 810.
Available from: https://doi.org/10.1007/s11244-010-9458-z.
Hara, M., et al., 2004. A carbon material as a strong protonic acid. Angew. Chem. Int. Ed. 43
(22), 2955 2958. Available from: https://doi.org/10.1002/anie.200453947.
Horgnies, M., Chen, J.J., Bouillon, C., 2013. Overview about the use of Fourier transform
infrared spectroscopy to study cementitious materials. WIT Trans. Eng. Sci. 77,
251 262.
Hoydonckx, H.E., et al., 2004. Esterification and transesterification of renewable chemicals.
Top. Catal. 27 (1 4), 83 96. Available from: https://doi.org/10.1023/B:
TOCA.0000013543.96438.1a.
Huang, D., Zhou, H., Lin, L., 2011. Biodiesel: an alternative to conventional fuel. Energy
Procedia 16, 1874 1885.
Huang, R., et al., 2015. Using renewable ethanol and isopropanol for lipid transesterification
in wet microalgae cells to produce biodiesel with low crystallization temperature.
Energy Convers. Manage. 105, 791 797. Available from: https://doi.org/10.1016/j.
enconman.2015.08.036.
Huang, M., et al., 2016. Biodiesel production catalyzed by highly acidic carbonaceous cata-
lysts synthesized via carbonizing lignin in sub and super critical ethanol. Appl. Catal.,
B: Environ. 190 (5), 103 114.
Kalligeros, S., et al., 2002. An investigation of using biodiesel/marine diesel blends on the
performance of a stationary diesel engine. Biomass Bioenergy 24 (2), 141 149.
Kang, S., Chang, J., Fan, J., 2014. One step preparation of sulfonated solid catalyst and its
effect in esterification reaction. Chin. J. Chem. Eng. 22 (4), 392 397. Available from:
https://doi.org/10.1016/S1004-9541(14)60058-6.
Kitano, M., et al., 2009. Preparation of a sulfonated porous carbon catalyst with high specific
surface area. Catal. Lett. 131 (1 2), 242 249. Available from: https://doi.org/10.1007/
s10562-009-0062-4.
Konwar, L.J., Boro, J., Deka, D., 2014. Review on latest developments in biodiesel produc-
tion using carbon-based catalysts. Renewable Sustainable Energy Rev. 29, 546 564.
Available from: https://doi.org/10.1016/j.rser.2013.09.003.