Page 364 - Renewable Energy Devices and System with Simulations in MATLAB and ANSYS
P. 364

Batteries and Ultracapacitors for Electric Power Systems with Renewable Energy Sources   351


              49.  H. Lin, T. Liang, and S. Chen, Estimation of battery state of health using probabilistic neural network,
                IEEE Transactions on Industrial Informatics, 9(2), 679–685, 2013.
              50.  N. Watrin, B. Blunier, and A. Miraoui, Review of adaptive systems for lithium batteries state-of-charge
                and state-of-health estimation, Proceeding of IEEE Transactions on Electrification Conference, pp. 1–6,
                2012.
              51.  M. Shahriari and M. Farrokhi, Online state-of-health estimation of VRLA batteries using state of charge,
                IEEE Transactions on Industrial Electronics, 60(1), 191–202, 2013.
              52.  T. L. Matthew, B. Suthar, P. W. C. Northrop, Sumitava De, C. Michael Hoff, O. Leitermann, M. L. Crow,
                S. Santhanagopalan, and  V. R. Subramanian, Battery Energy Storage System (BESS) and Battery
                Management System (BMS) for grid-scale applications, Proceedings of IEEE, 102(6), 1014–1030, 2014.
              53.  B. S. Bhangu, P. Bentley, D. A. Stone, and C. M. Bingham, Nonlinear observers for predicting state-
                of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles, IEEE Transactions on
                Vehicular Technology, 54(3), 783–794, 2005.
              54.  A. Widodo, M. Shim, W. Caesarendra, and B. Yang, Intelligent prognostics for battery health monitoring
                based on sample entropy, Expert System Applications, 38,(9), 11763–11769, 2011.
              55.  B. Saha, K. Goebel, S. Poll, and J. Christophersen, Prognostics methods for battery health monitor-
                ing using a bayesian framework, IEEE Transactions on Instrument and Measurement, 58(2), 291–296,
                2009.
              56.  D. Stroe, M. Swierczynski, A. Stan, R. Teodorescu, and S. Andreasen, Accelerated lifetime testing meth-
                odology for lifetime estimation of lithium-ion batteries used in augmented wind power plants, IEEE
                Transactions on Industry Applications, 50(6), 4006–4017, 2014.
              57.  J. Cao, N. Schofield, and A. Emadi, Battery balancing methods: A comprehensive review, Proceedings of
                IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6, China, 2008.
              58.  W. Bentley, Cell balancing considerations for lithium-ion battery systems, Proceeding of Annual Battery
                Conference on Applications and Advances, pp. 223–226, 1997.
              59.  N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, Charge equalization for an electric
                vehicle battery system, IEEE Transaction on Aerospace and Electronics Systems, 34(1), 235–246, 1998.
              60.  S. Moore and P. Schneider, A review of cell equalization methods for lithium ion and lithium polymer
                battery systems, Proceeding of Society of Automotive Engineers, SAE, pp. 1–5, 2001.
              61.  M. Uno and K. Tanaka, Influence of high-frequency charge–discharge cycling induced by cell voltage
                equalizers on the life performance of lithium-ion cells, IEEE Transaction on Vehicular Technologies,
                60(4), 1505–1515, 2011.
              62.  G.  T. Kim and  T. A. Lipo, VSI-PWM rectifier/inverter system with a reduced switch count,  IEEE
                Transactions on Industrial Applications, 32(6), 1331–1337, 1996.
              63.  B. T. Ooi, J. W. Dixon, A. B. Kulkarni, and M. Nishimoto, An integrated ac drive system using a con-
                trolled current PWM rectifier/inverter link, IEEE Transactions on Power Electronics, 3(1), 64–71, 1988.
              64.  P. Verdelho and G. D. Marques, Four-wire current-regulated PWM voltage converter, IEEE Transactions
                on Industrial Electronics, 45(5), 761–770, 1998.
              65.  R. Zhang, F. C. Lee, and D. Boroyevich, Four-legged three-phase PFC rectifier with fault tolerant capa-
                bility, Proceedings of IEEE Power Electronics Specialists Conference, PESC, pp. 359–364, 2000.
              66.  M. Hombu, S. Ueda, and A. Ueda, A current source GTO inverter with sinusoidal inputs and outputs,
                IEEE Transactions on Industrial Applications, 23(2), 247–255, 1987.
              67.  R. J. Hill and F. L. Luo, Current source optimization in  AC-DC GTO thyristor converters,  IEEE
                Transactions on Industrial Electronics, 34(4), 475–482, 1987.
              68.  D. G. Homes and T. A. Lipo, Implementation of a controlled rectifier using AC-AC matrix converter
                theory, IEEE Transactions on Power Electronics, 7(1), 240–250, 1992.
              69.  J. B. Ejea, E. Sanchis, A. Ferreres, J. A. Carrasco, and R. D. L. Calle, High-frequency bi-directional
                three-phase rectifier based on a matrix converter topology with power factor correction, Proceedings of
                IEEE Applied Power Electronics Conference and Exposition, APEC, pp. 828–834, 2001.
              70.  D. Carlton and W. G. Dunford, Multilevel, unidirectional AC-DC converters, a cost effective alternative
                to bi-directional converters, Proceedings of IEEE Power Applied Electronics Specialists Conference,
                pp. 1911–1916, 2001.
              71.  J. S. Lai and F. Z. Peng, Multilevel converters—A new breed of power converters, Transactions on
                Industrial Applications, 32(3), 509–517, 1996.
              72.  B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. Kothari, A review of three-phase
                improved power  quality  AC–DC  converters,  IEEE  Transactions on Industrial  Electronics, 51(3),
                641–660, 2004.
   359   360   361   362   363   364   365   366   367   368   369