Page 364 - Renewable Energy Devices and System with Simulations in MATLAB and ANSYS
P. 364
Batteries and Ultracapacitors for Electric Power Systems with Renewable Energy Sources 351
49. H. Lin, T. Liang, and S. Chen, Estimation of battery state of health using probabilistic neural network,
IEEE Transactions on Industrial Informatics, 9(2), 679–685, 2013.
50. N. Watrin, B. Blunier, and A. Miraoui, Review of adaptive systems for lithium batteries state-of-charge
and state-of-health estimation, Proceeding of IEEE Transactions on Electrification Conference, pp. 1–6,
2012.
51. M. Shahriari and M. Farrokhi, Online state-of-health estimation of VRLA batteries using state of charge,
IEEE Transactions on Industrial Electronics, 60(1), 191–202, 2013.
52. T. L. Matthew, B. Suthar, P. W. C. Northrop, Sumitava De, C. Michael Hoff, O. Leitermann, M. L. Crow,
S. Santhanagopalan, and V. R. Subramanian, Battery Energy Storage System (BESS) and Battery
Management System (BMS) for grid-scale applications, Proceedings of IEEE, 102(6), 1014–1030, 2014.
53. B. S. Bhangu, P. Bentley, D. A. Stone, and C. M. Bingham, Nonlinear observers for predicting state-
of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles, IEEE Transactions on
Vehicular Technology, 54(3), 783–794, 2005.
54. A. Widodo, M. Shim, W. Caesarendra, and B. Yang, Intelligent prognostics for battery health monitoring
based on sample entropy, Expert System Applications, 38,(9), 11763–11769, 2011.
55. B. Saha, K. Goebel, S. Poll, and J. Christophersen, Prognostics methods for battery health monitor-
ing using a bayesian framework, IEEE Transactions on Instrument and Measurement, 58(2), 291–296,
2009.
56. D. Stroe, M. Swierczynski, A. Stan, R. Teodorescu, and S. Andreasen, Accelerated lifetime testing meth-
odology for lifetime estimation of lithium-ion batteries used in augmented wind power plants, IEEE
Transactions on Industry Applications, 50(6), 4006–4017, 2014.
57. J. Cao, N. Schofield, and A. Emadi, Battery balancing methods: A comprehensive review, Proceedings of
IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6, China, 2008.
58. W. Bentley, Cell balancing considerations for lithium-ion battery systems, Proceeding of Annual Battery
Conference on Applications and Advances, pp. 223–226, 1997.
59. N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, Charge equalization for an electric
vehicle battery system, IEEE Transaction on Aerospace and Electronics Systems, 34(1), 235–246, 1998.
60. S. Moore and P. Schneider, A review of cell equalization methods for lithium ion and lithium polymer
battery systems, Proceeding of Society of Automotive Engineers, SAE, pp. 1–5, 2001.
61. M. Uno and K. Tanaka, Influence of high-frequency charge–discharge cycling induced by cell voltage
equalizers on the life performance of lithium-ion cells, IEEE Transaction on Vehicular Technologies,
60(4), 1505–1515, 2011.
62. G. T. Kim and T. A. Lipo, VSI-PWM rectifier/inverter system with a reduced switch count, IEEE
Transactions on Industrial Applications, 32(6), 1331–1337, 1996.
63. B. T. Ooi, J. W. Dixon, A. B. Kulkarni, and M. Nishimoto, An integrated ac drive system using a con-
trolled current PWM rectifier/inverter link, IEEE Transactions on Power Electronics, 3(1), 64–71, 1988.
64. P. Verdelho and G. D. Marques, Four-wire current-regulated PWM voltage converter, IEEE Transactions
on Industrial Electronics, 45(5), 761–770, 1998.
65. R. Zhang, F. C. Lee, and D. Boroyevich, Four-legged three-phase PFC rectifier with fault tolerant capa-
bility, Proceedings of IEEE Power Electronics Specialists Conference, PESC, pp. 359–364, 2000.
66. M. Hombu, S. Ueda, and A. Ueda, A current source GTO inverter with sinusoidal inputs and outputs,
IEEE Transactions on Industrial Applications, 23(2), 247–255, 1987.
67. R. J. Hill and F. L. Luo, Current source optimization in AC-DC GTO thyristor converters, IEEE
Transactions on Industrial Electronics, 34(4), 475–482, 1987.
68. D. G. Homes and T. A. Lipo, Implementation of a controlled rectifier using AC-AC matrix converter
theory, IEEE Transactions on Power Electronics, 7(1), 240–250, 1992.
69. J. B. Ejea, E. Sanchis, A. Ferreres, J. A. Carrasco, and R. D. L. Calle, High-frequency bi-directional
three-phase rectifier based on a matrix converter topology with power factor correction, Proceedings of
IEEE Applied Power Electronics Conference and Exposition, APEC, pp. 828–834, 2001.
70. D. Carlton and W. G. Dunford, Multilevel, unidirectional AC-DC converters, a cost effective alternative
to bi-directional converters, Proceedings of IEEE Power Applied Electronics Specialists Conference,
pp. 1911–1916, 2001.
71. J. S. Lai and F. Z. Peng, Multilevel converters—A new breed of power converters, Transactions on
Industrial Applications, 32(3), 509–517, 1996.
72. B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. Kothari, A review of three-phase
improved power quality AC–DC converters, IEEE Transactions on Industrial Electronics, 51(3),
641–660, 2004.