Page 365 - Renewable Energy Devices and System with Simulations in MATLAB and ANSYS
P. 365

352             Renewable Energy Devices and Systems with Simulations in MATLAB  and ANSYS ®
                                                                                ®

              73.  G. Fontes, C. Turpin,S. Astier, and T. Meynard, Interactions between fuel cells and power converters:
                influence of current harmonics on a fuel cell stack, IEEE Transactions on Power Electronics, 22(2),
                670–678, 2007.
              74.  M. Kabalo, D. Paire, B. Blunier, D. Bouquain, M. Simões, and A. Miraoui, Experimental evaluation of
                four-phase floating interleaved boost converter design and control for fuel cell applications, IET Power
                Electronics, 6(2), 1–12, 2012.
              75.  M. Ortúzar, J. Dixon, and J. Moreno, Ultracapacitor-based auxiliary energy system for an electric vehicle:
                Implementation and evaluation, IEEE Transactions on Industrial Electronics, 54(4), 2147–2156, 2007.
              76.  R. M. Schupbachj and C. Bald, Comparing DC-DC converters for power management in hybrid electric
                vehicles, IEEE International Electric Machines and Drives Conference, pp. 1369–1374, 2003.
              77.  J. Czogalla, J. Li, and C. R. Sullivan, Automotive application of multi-phase coupled-inductor DC-DC
                converter, Proceedings of IEEE Industry Applications Conference, pp. 1524–1529, 2003.
              78.  M. Gerber, J. A. Ferreira, N. Seliger, and I. W. Hofsajer, Design and evaluation of an automotive inte-
                grated system module, Proceedings of IEEE Industry Applications Conference, pp. 1144–1151, 2005.
              79.  X. Ruan, B. Li, Q. Chen, S. C. Tan, and C. K. Tse, Fundamental considerations of three-level DC–DC
                converters: Topologies, analyses, and control, Proceedings of IEEE Transactions on Circuits and Systems,
                55(11), 3733–3743, 2008.
              80.  R. M. Cuzner, A. R. Bendre, P. J. Faill, and B. Semenov, Implementation of a non-isolated three
                level DC/DC converter suitable for high power systems, Proceedings of IEEE Industry Applications
                Conference, pp. 2001–2008, 2007.
              81.  Y. Shi, Z. Jin, and X. Cai, Three-level DC-DC converter: Four switches Vsmax=Vin/2, TL voltage wave-
                form before LC filter, Proceedings of IEEE Power Electronics Specialists Conference, pp. 1–4, 2006.
              82.  V. Yousefzadeh, E. Alarcon, and D. Maksimovic, Three-level buck converter for envelope tracking in RF
                power amplifiers, IEEE Transactions on Power Electronics, 21(2), 549–552, 2006.
              83.  G. Y. Choe, J. S. Kim, H. S. Kang, and B. K. Lee, A optimal design methodology of an interleaved boost
                converter for fuel cell application, Journal of Electrical Engineering and Technology, 5(2), 319–328,
                2010.
              84.  Y. Du, X. Zhou, S. Bai, S. Lukic, and A. Huang, Review of non-isolated Bi-directional DC-DC converters
                for plug-in hybrid electric vehicle charge station application at municipal parking decks, Proceedings of
                IEEE Applied for Electronics Conference and Exposition (APEC), pp. 1145–1151, 2010.
              85.  F. Krismer, J. Biela, and J. W. Kolar, A comparative evaluation of isolated Bi-directional DC/DC con-
                verters with wide input and output voltage range, Proceedings of 40th IEEE IAS Annual Meeting, (IAS),
                pp. 599–606, 2005.
              86.  L. Zhu, X. Xu, and F. Flett, A 3kW isolated bi-directional DC/DC converter for fuel cell electric vehicle
                application, Proceedings of the International Conference, Power Electronics, Intelligent Motion, Power
                Quality, PCIM 2001, pp. 77–82, 2001.
              87.  Y. Srdjan, L. Jacobson, and A. Huang, Review of high power isolated bi-directional DC-DC convert-
                ers for PHEV/EV DC charging infrastructure, Proceedings of IEEE Energy Conversion Congress and
                Exposition (ECCE), pp. 553–560, 2011.
              88.  O. Garcia, L. Flores, A. Oliver, J. Cobos, and J. Pena, Bidirectional DC-DC Converter for Hybrid
                Vehicles, Proceedings of IEEE Power Electronics Specialists Conference, pp. 1881–1886, 2005.
              89.  L. Zhu,  A novel soft-commutating isolated boost full-bridge ZVS-PWM DC-DC converter for
                bi-directional high power applications, Proceedings of IEEE Power Electronics Specialists Conference,
                pp. 2141–2146, 2004.
              90.  W. G. Hurley, E. Gath, and J. G. Breslin, Optimizing the AC resistance of multilayer transformer wind-
                ings with arbitrary current waveforms, IEEE Transactions on Power Electronics, 15(2), 369–376, 2000.
              91.  J. Reinert, A. Brockmeyer, and R. De Doncker, Calculation of losses in ferro- and ferrimagnetic mate-
                rials based on the modified Steinmetz equation, IEEE Transactions on Industry Applications, 37(4),
                1055–1061, 2001.
              92.  S. Inoue and H. Akagi, A bi-directional DC/DC converter for an energy storage system, Proceedings of
                IEEE Applied Power Electronics Conference (APEC), pp. 761–767, 2007.
              93.  X. Xu, A. M. Khambadkone, and R. Oruganti, A soft-switched back-to-back bi-directional DC/DC
                converter with a FPGA based digital control for automotive applications,  Proceedings of Industrial
                Electronics Society, IECON’2007, pp. 262–267, 2007.
              94.  T. Ho, G. Verghese, C. Osawa, B. S. Jacobson, and T. Kato, Dynamic modeling, simulation and control
                of a series resonant converter with clamped capacitor voltage, Proceedings of IEEE Power Electronics
                Specialists Conference (PESC), pp. 1289–1296, 1994.
   360   361   362   363   364   365   366   367   368   369   370