Page 121 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 121

112                                 INTEGRALS                              [CHAP. 5



                                         n      n          n
                     5.34.  Prove that lim  þ      þ     þ     ¼ .
                                                          2
                                               2
                                        2
                                   n!1 n þ 1 2  n þ 2 2  n þ n 2  4
                                         p  p  p       p
                                       1 þ 2 þ 3 þ     þ n  1
                     5.35.  Prove that lim              ¼      if p >  1.
                                              n pþ1       p þ 1
                                   n!1
                                                  ð  b
                                                              a
                                                    x
                                                          b
                     5.36.  Using the definition, prove that  e dx ¼ e   e .
                                                   a
                     5.37.  Work Problem 5.5 directly, using Problem 1.94 of Chapter 1.
                                      (                           )
                                          1       1           1           p ffiffiffi
                     5.38.  Prove that lim p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ     þ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ lnð1 þ  2Þ.
                                         2
                                                 2
                                                              2
                                   n!1  n þ 1 2  n þ 2 2     n þ n 2
                                       n             1
                                      X    n     tan  x
                     5.39.  Prove that lim      ¼       if x 6¼ 0.
                                         2
                                             2 2
                                         n þ k x    x
                                      k¼1
                                   n!1
                     PROPERTIES OF DEFINITE INTEGRALS
                     5.40.  Prove (a)Property 2, (b)Property 3 on Pages 91 and 92.
                                                               ð  b     ð  c    ð b
                     5.41.  If f ðxÞ is integrable in ða; cÞ and ðc; bÞ,prove that  f ðxÞ dx ¼  f ðxÞ dx þ  f ðxÞ dx.
                                                               a        a        c
                                                                           ð b       ð  b
                     5.42.  If f ðxÞ and gðxÞ are integrable in ½a; bŠ and f ðxÞ @ gðxÞ,prove that  f ðxÞ dx @  gðxÞ dx.
                                                                            a         a
                                            2
                     5.43.  Prove that 1   cos x A x =  for 0 @ x @  =2.
                                    1
                                   ð
                                      cos nx
                     5.44.  Prove that     dx @ ln 2 for all n.

                                    0 x þ 1

                                      p ffiffi
                                     3  x  sin x
                                      e
                                   ð
                     5.45.  Prove that      2  dx  @  .

                                      1  x þ 1     12e
                     MEAN VALUE THEOREMS FOR INTEGRALS
                     5.46.  Prove the result (5), Page 92. [Hint: If m @ f ðxÞ @ M,then mgðxÞ @ f ðxÞgðxÞ @ MgðxÞ. Now integrate
                                     ð b
                          and divide by  gðxÞ dx.  Then apply Theorem 9 in Chapter 3.
                                      a
                     5.47.  Prove that there exist values   1 and   2 in 0 @ x @ 1suchthat
                                                    ð  1
                                                      sin  x      2
                                                                 2
                                                       2
                                                     0 x þ 1  dx ¼   ð  þ 1Þ  ¼  4  sin    2
                                                                 1
                          Hint: Apply the first mean value theorem.
                                                                   ð
                     5.48.  (a)Prove that there is a value   in 0 @ x @   such that  e  x  cos xdx ¼ sin  .(b) Suppose a wedge in the
                                                                    0
                          shape of a right triangle is idealized by the region bound by the x-axis, f ðxÞ¼ x, and x ¼ L.Let the weight
                                                               2
                          distribution for the wedge be defined by WðxÞ¼ x þ 1. Use the generalized mean value theorem to show
                                                                    2
                                                                 3L L þ 2
                          that the point at which the weighted value occurs is  .
                                                                    2
                                                                 4 L þ 3
   116   117   118   119   120   121   122   123   124   125   126