Page 122 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 122

CHAP. 5]                            INTEGRALS                                   113


                     CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION
                                      ð                 ð 1  tan  1  t  ð 3  dx      ð  csch 2 p ffiffiffi u
                                                3
                                        2 sin x
                     5.49.  Evaluate:  (a)  x e  3  cos x dx;  ðbÞ  dt;  ðcÞ  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ;  ðdÞ  p ffiffiffi  du,
                                                         0 1 þ t 2     1  4x   x 2       u
                             ð 2  dx
                           (e)       2 .
                               2 16   x
                                                2
                                                                        ffiffiffi
                                   e
                           Ans.  (a)  1 sin x 3  þ c;  ðbÞ   =32;  ðcÞ  =3;  ðdÞ  2coth  p u þ c;  1 ln 3.
                                  3                                           ðeÞ  4
                                                                         p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                       1     dx        3          dx      x   1
                                                                           2
                                      ð               p ffiffiffi   ð
                     5.50.  Show that  (a)              ;        p             þ c.
                                                2 3=2  ¼  12  ðbÞ  2  ffiffiffiffiffiffiffiffiffiffiffiffiffi ¼  x
                                                                   2
                                       0 ð3 þ 2x   x Þ         x  x   1
                                       ð
                                        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                      ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  1 2  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                    p
                     5.51.  Prove that  (a)  2  2  1  2   2           2   2
                                                  2          2        u   a j
                                         u   a du ¼ u u   a   a ln ju þ
                             ð
                               p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                         1
                                                   1 2
                                             2
                                    2
                                                 2
                                 2
                           (b)  a   u du ¼ u a   u þ a sin  1 u=a þ c;  a > 0.
                                         2
                                                   2
                               ð   xdx           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                   2
                                                                      2
                     5.52.  Find  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi :  Ans.  x þ 2x þ 5   ln jx þ 1 þ  x þ 2x þ 5jþ c.
                                  2
                                 x þ 2x þ 5
                     5.53.  Establish the validity of the method of integration by parts.
                                     ð               ð
                                                                                            2
                                                       3  2x
                                                                                 1  2x
                                                                                       3
                     5.54.  Evaluate  (a)  x cos 3xdx;  ðbÞ  x e  dx:  Ans.  (a)  2=9;  ðbÞ  e  ð4x þ 6x þ 6x þ 3Þþ c
                                                                                 3
                                      0
                                      ð  1          1    1  1
                                         2
                     5.55.  Show that  (a)  x tan  1  xdx ¼      þ ln 2
                                       0            12   6  6
                                                ffiffiffi  ffiffiffi
                                              p    p           p ffiffiffi
                              ð
                               2 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  5 7  3 3  3  5 þ 2 7
                                   2                     ln        .
                           ðbÞ    x þ x þ 1 dx ¼  4  þ  4  þ  8  p ffiffiffi
                                2                           2 3   3
                     5.56.  (a)If u ¼ f ðxÞ and v ¼ gðxÞ have continuous nth derivatives, prove that
                                           ð                                     ð
                                            uv ðnÞ dx ¼ uv ðn 1Þ    u v  þ u v          ð 1Þ n  u vdx
                                                                  00 ðn 3Þ
                                                           0 ðn 2Þ
                                                                                   ðnÞ
                           called generalized integration by parts.(b) What simplifications occur if u ðnÞ  ¼ 0? Discuss. (c)Use (a)to
                                 ð
                                                     4
                                                          2
                                    4
                           evaluate  x sin xdx. Ans.  (c)     12  þ 48
                                  0
                                   ð 1   xdx          2
                     5.57.  Show that                 .
                                         2  2   ¼  8
                                   0 ðx þ 1Þ ðx þ 1Þ
                                                             x          A     B    Cx þ D
                           [Hint: Use partial fractions, i.e., assume                    and find A; B; C; D.]
                                                             2  2   ¼     2  þ  x þ 1  þ  x þ 1
                                                                                    2
                                                        ðx þ 1Þ ðx þ 1Þ  ðx þ 1Þ
                                   ð    dx
                     5.58.  Prove that      ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi ;    > 1.
                                                2
                                    0     cos x      1
                     NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS
                                 ð  1  dx
                     5.59.  Evaluate    approximately, using (a)the trapezoidal rule,  (b)Simpson’s rule, taking n ¼ 4.
                                  0 1 þ x
                           Compare with the exact value, ln 2 ¼ 0:6931.
                                                                       ð  =2
                                                                                                      2
                                                                            2
                     5.60.  Using (a)the trapezoidal rule, (b)Simpson’s rule evaluate  sin xdx by obtaining the values of sin x
                                                                        0
                           at x ¼ 08; 108; ... ; 908 and compare with the exact value  =4.
                     5.61.  Prove the  (a) rectangular rule,  (b) trapezoidal rule, i.e., (16) and (17)of Page 98.
                     5.62.  Prove Simpson’s rule.
   117   118   119   120   121   122   123   124   125   126   127