Page 124 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 124

CHAP. 5]                            INTEGRALS                                   115

                                         dx           sin 2x              dx
                                     ð            ð  =2             ð
                                      1                              1
                     5.76.  Evaluate  (a)   3  ;  ðbÞ     4=3  dx;  ðcÞ  p ffiffiffiffiffiffiffiffiffiffiffiffiffi.
                                      0 1 þ x      0  ðsin xÞ              x þ 1
                                                                            2
                                   2                                 0 x þ
                           Ans.  (a)  p ffiffiffi  ðbÞ 3 ðcÞ does not exist
                                  3 3
                                       2         Ð   =2 sin t  dt
                                                    e
                     5.77.  Evaluate lim  ex =    e =4 þ  x  .  Ans.  e=2
                                 x! =2     1 þ cos 2x
                                      ð 3                                    ð 2
                                       x
                                                                              x
                                    d                                       d
                                         2
                                                     3
                                                         5
                                                             3
                                                                                   2
                                                                                                   2
                                                                                             4
                                                                  2
                     5.78.  Prove:  (a)  ðt þ t þ 1Þ dt ¼ 3x þ x   2x þ 3x   2x;  ðb  cos t dt ¼ 2x cos x   cos x .
                                    dx x 2                                 dx x
                                       ð                   ð   =2
                                          ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi     dx      p ffiffiffi  p ffiffiffi
                                          p
                     5.79.  Prove that  (a)  1 þ sin x dx ¼ 4;  ðbÞ    ¼  2 lnð 2 þ 1Þ.
                                       0                    0  sin x þ cos x
                                             ð 1  dx    ð 1  dy
                     5.80.  Explain the fallacy: I ¼  ¼        ¼ I,using the transformation x ¼ 1=y.Hence I ¼ 0.
                                               1 1 þ x 2   1 1 þ y 2
                                    1
                                            1
                           But I ¼ tan ð1Þ  tan ð 1Þ¼  =4  ð  =4Þ¼  =2.  Thus  =2 ¼ 0.
                                    1=2  cos  x  1    1 1
                                   ð
                     5.81.  Prove that  p ffiffiffiffiffiffiffiffiffiffiffiffiffi dx @  tan  .
                                    0   1 þ x 2  4     2
                                     (                    ffiffiffiffiffiffiffiffiffiffiffiffiffiffi )
                                      p ffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffi  p
                                                          2n   1         p ffiffiffi
                     5.82.  Evaluate lim  n þ 1 þ  n þ 2 þ     þ  .  Ans.  2 3  ð2 2   1Þ
                                                 n 3=2
                                  n!1

                                          1if x is irrational
                     5.83.                              is not Riemann integrable in ½0; 1Š.
                                          0if x is rational
                           Prove that f ðxÞ¼
                           [Hint: In (2), Page 91, let   k , k ¼ 1; 2; 3; ... ; n be first rational and then irrational points of subdivision and
                           examine the lower and upper sums of Problem 5.31.]
                     5.84.  Prove the result (3)ofProblem 5.31.  [Hint: First consider the effect of only one additional point of
                           subdivision.]
                                               s
                     5.85.  In Problem 5.31, prove that   s @ S.  [Hint: Assume the contrary and obtain a contradiction.]
                                                                ð  b
                     5.86.  If f ðxÞ is sectionally continuous in ½a; bŠ,prove that  f ðxÞ dx exists. [Hint: Enclose each point of disconti-
                                                                 a
                           nuity in an interval, noting that the sum of the lengths of such intervals can be made arbitrarily small. Then
                           consider the difference between the upper and lower sums.
                                  8
                                    2x    0 < x < 1   ð
                                  <                    2
                     5.87.  If f ðxÞ¼  3  x ¼ 1  , find  f ðxÞ dx.  Interpret the result graphically. Ans.  9
                                    6x   11 < x < 2
                                  :                    0
                                   3
                                  ð
                                           1
                     5.88.  Evaluate  fx  ½xŠþ g dx where ½xŠ denotes the greatest integer less than or equal to x.Interpret the result
                                           2
                                   0
                           graphically.  Ans.3
                                              m
                                      ð  =2  sin x
                     5.89.  (a)Prove that  m      m  dx ¼  for all real values of m.
                                       0  sin x þ cos x  4
                                      ð 2   dx
                           (b)Prove that        ¼  .
                                              4
                                       0 1 þ tan x
                                   ð  =2  sin x
                     5.90.  Prove that    dx exists.
                                    0   x
                                   ð 0:5  tan  1  x
                     5.91.  Show that       dx ¼ 0:4872 approximately.
                                    0   x
                                   ð    xdx      2
                     5.92.  Show that     2  ¼ p :
                                                 ffiffiffi
                                    0 1 þ cos x  2 2
   119   120   121   122   123   124   125   126   127   128   129