Page 117 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 117

108                                 INTEGRALS                              [CHAP. 5



                                                     1   u 2
                                        2
                                                2
                          Then  cos x ¼ cos x=2   sin x=2 ¼  :
                                                     1 þ u 2
                                   1                             2 du
                                                        2
                                       2
                          Also  du ¼ sec x=2 dx or  dx ¼ 2cos x=2 du ¼  :
                                   2                            1 þ u 2
                                               ð
                                                  du   1            1   1 1
                          Thus the integral becomes  ¼ tan  1  u=2 þ c ¼ tan  tan x=2 þ c:
                                                 2
                                                 u þ 4  2           2     2
                                  ð    x sin x
                     5.22. Evaluate          dx.
                                          2
                                   0 1 þ cos x
                              Let x ¼     y.  Then
                                           x sin x     ð    yÞ sin y     sin y       y sin y
                                       ð             ð               ð            ð
                                    I ¼        2  dx ¼       2  dy ¼        2  dy        2  dy
                                        0 1 þ cos x   0 1 þ cos y     0 1 þ cos y  0 1 þ cos y
                                          ð
                                                                          2

                                                              1
                                      ¼      dðcos yÞ    I ¼   tan ðcos yÞj 0   I ¼   =2   I
                                                 2
                                           0 1 þ cos y
                                                 2
                                   2
                          i.e.;  I ¼   =2   I  or I ¼   =4:
                                     =2     sin x
                                    ð      p ffiffiffiffiffiffiffiffiffiffi
                     5.23. Prove that           ffiffiffiffiffiffiffiffiffiffiffi dx ¼ .
                                         ffiffiffiffiffiffiffiffiffiffi
                                       p
                                              p
                                    0    sin x þ  cos x  4
                              Letting x ¼  =2   y,we have
                                       ð   =2  p ffiffiffiffiffiffiffiffiffiffi  ð   =2  p ffiffiffiffiffiffiffiffiffiffi  ð  =2  p ffiffiffiffiffiffiffiffiffiffiffi
                                               sin x              cos y              cos x
                                                                                        ffiffiffiffiffiffiffiffiffiffi dx
                                    I ¼   p ffiffiffiffiffiffiffiffiffiffi  ffiffiffiffiffiffiffiffiffiffiffi dx ¼  p ffiffiffiffiffiffiffiffiffi dy ¼  p
                                                 p           p ffiffiffiffiffiffiffiffiffiffi       p ffiffiffiffiffiffiffiffiffiffiffi
                                        0  sin x þ  cos x  0   cos y þ  sin y  0  cos x þ  sin x
                          Then
                                                  ð  =2  p ffiffiffiffiffiffiffiffiffiffi  ð  =2  p cos x
                                                                             ffiffiffiffiffiffiffiffiffiffiffi
                                                          sin x
                                                                                ffiffiffiffiffiffiffiffiffiffi dx
                                                     p ffiffiffiffiffiffiffiffiffiffi              p
                                            I þ I ¼         p ffiffiffiffiffiffiffiffiffiffiffi dx þ  p  ffiffiffiffiffiffiffiffiffiffiffi
                                                   0  sin x þ  cos x  0  cos x þ  sin x
                                                    =2       cos x     =2
                                                  ð  p ffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffi  ð
                                                      sin x þ
                                                ¼    p ffiffiffiffiffiffiffiffiffiffi  ffiffiffiffiffiffiffiffiffiffiffi dx ¼  dx ¼
                                                            p
                                                   0  sin x þ  cos x  0     2
                          from which 2I ¼  =2 and I ¼  =4.
                              The same method can be used to prove that for all real values of m,
                                                       ð  =2    m
                                                              sin x
                                                            m
                                                                   m
                                                          sin x þ cos x  dx ¼  4
                                                        0
                          (see Problem 5.89).
                              Note: This problem and Problem 5.22 show that some definite integrals can be evaluated without first
                          finding the corresponding indefinite integrals.
                     NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS
                                   1  dx
                                  ð
                     5.24. Evaluate     2  approximately, using (a) the trapezoidal rule, (b) Simpson’s rule, where the
                                   0 1 þ x
                          interval ½0; 1Š is divided into n ¼ 4 equal parts.
                                            2
                              Let f ðxÞ¼ 1=ð1 þ x Þ.  Using the notation on Page 98, we find  x ¼ðb   aÞ=n ¼ð1   0Þ=4 ¼ 0:25.
                          Then keeping 4 decimal places, we have: y 0 ¼ f ð0Þ¼ 1:0000, y 1 ¼ f ð0:25Þ¼ 0:9412, y 2 ¼ f ð0:50Þ¼ 0:8000,
                          y 3 ¼ f ð0:75Þ¼ 0:6400, y 4 ¼ f ð1Þ¼ 0:50000.
                          (a) The trapezoidal rule gives
   112   113   114   115   116   117   118   119   120   121   122