Page 116 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 116

CHAP. 5]                            INTEGRALS                                   107

                                                                 n
                           (a)Use integration by parts, letting u ¼ ln x, dv ¼ x dx,sothat du ¼ðdxÞ=x, v ¼ x nþ1 =ðn þ 1Þ.  Then
                                            ð         ð        ð      x nþ1   ð  x nþ1  dx
                                              n
                                             x ln xdx ¼ udv ¼ uv   vdu ¼  ln x
                                                                      n þ 1     n þ 1 x
                                                      x nþ1     x nþ1
                                                                    þ c
                                                    ¼     ln x     2
                                                      n þ 1
                                                               ðn þ 1Þ
                               ð         ð          1
                                                         2
                                x  1 ln xdx ¼ ln xdðln xÞ¼ ðln xÞ þ c:
                                                    2
                           ðbÞ
                               ð
                                  ffiffiffiffiffiffiffiffi
                                 p 2xþ1
                     5.18. Find  3    dx.
                                                                                    ð
                                 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2                                  y
                              Let  2x þ 1 ¼ y,2x þ 1 ¼ y .  Then dx ¼ ydy and the integral becomes  3   ydy.
                                                                            y
                                                           y
                              Integrate by parts, letting u ¼ y, dv ¼ 3 dy;then du ¼ dy, v ¼ 3 =ðln 3Þ, and we have
                                        ð       ð         ð     y   3 y  ð  3 y  y   3 y  3 y
                                          y
                                                                 ln 3  ln 3    ln 3
                                         3   ydy ¼ udv ¼ uv   vdu ¼       dy ¼         2  þ c
                                                                                    ðln 3Þ
                                1
                               ð
                     5.19. Find  x lnðx þ 3Þ dx.
                                0
                                                             dx     x 2
                                                                      .  Hence on integrating by parts,
                                                            x þ 3    2
                              Let u ¼ lnðx þ 3Þ, dv ¼ xdx. Then du ¼  , v ¼
                                    ð             2          ð  2    2         ð
                                                 x         1 x dx   x         1          9
                                                                                            dx
                                     x lnðx þ 3Þ dx ¼  lnðx þ 3Þ   ¼  lnðx þ 3Þ   x   3 þ
                                                 2         2 x þ 3  2         2        x þ 3
                                                             (              )
                                                 x 2       1 x 2
                                                                  3x þ 9lnðx þ 3Þ þ c
                                                 2         2  2
                                               ¼   lnðx þ 3Þ
                                                     1            5       9
                                                    ð
                           Then                       x lnðx þ 3Þ dx ¼    4ln 4 þ  ln 3
                                                     0            4       2
                                    ð
                                         6   x
                     5.20. Determine             dx.
                                     ðx   3Þð2x þ 5Þ
                                                                6   x      A     B
                              Use the method of partial fractions.  Let  ¼   þ      .
                                                                         x   3  2x þ 5
                                                            ðx   3Þð2x þ 5Þ
                           Method 1: To determine the constants A and B, multiply both sides by ðx   3Þð2x þ 5Þ to obtain
                                                                or 6   x ¼ 5A   3B þð2A þ BÞx
                                         6   x ¼ Að2x þ 5Þþ Bðx   3Þ                                  ð1Þ
                           Since this is an identity, 5A   3B ¼ 6, 2A þ B ¼ 1 and A ¼ 3=11, B ¼ 17=11.  Then
                                        6   x        3=11      17=11    3          17
                                   ð                ð        ð
                                                                                     ln j2x þ 5jþ c
                                                     x   3    2x þ 5    11         22
                                                dx ¼     dx þ       dx ¼  ln jx   3j
                                    ðx   3Þð2x þ 5Þ
                           Method 2: Substitute suitable values for x in the identity (1). For example, letting x ¼ 3 and x ¼ 5=2in
                           (1), we find at once A ¼ 3=11, B ¼ 17=11.
                                       dx
                                  ð
                     5.21. Evaluate         by using the substitution tan x=2 ¼ u.           2
                                    5 þ 3 cos x                                           √1 + u      u
                              From Fig. 5-7 we see that                                x/2
                                                u                1                          1
                                               ffiffiffiffiffiffiffiffiffiffiffiffiffi ;
                                      sin x=2 ¼ p       cos x=2 ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                               1 þ u 2          1 þ u 2                   Fig. 5-7
   111   112   113   114   115   116   117   118   119   120   121