Page 111 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 111

102                                 INTEGRALS                              [CHAP. 5


                                                         b
                                                        ð
                                                           2
                                                          x ½gðxÞ  f ðxފ dx
                                                     l ¼
                                                         a
                        By idealizing the plane region, R,asa volume with uniform density one, the expression
                                                                                   2
                                                     2
                     ½ f ðxÞ  gðxފ dx stands in for mass and r has the coordinate representation x .  (See Problem 5.25(b)
                     for more details.)



                                                     Solved Problems


                     DEFINITION OF A DEFINITE INTEGRAL
                      5.1. If f ðxÞ is continuous in ½a; bŠ prove that
                                                      n
                                                 b   a  X               ð b
                                             lim        fa þ  kðb   aÞ  ¼  f ðxÞ dx
                                                  n             n
                                             n!1                        a
                                                     k¼1
                              Since f ðxÞ is continuous, the limit exists independent of the mode of subdivision (see Problem 5.31).
                          Choose the subdivision of ½a; bŠ into n equal parts of equal length  x ¼ðb   aÞ=n (see Fig. 5-1, Page 90). Let
                            k ¼ a þ kðb   aÞ=n, k ¼ 1; 2; ... ; n. Then
                                              n                  n               ð b
                                             X              b   a  X    kðb   aÞ
                                          lim   f ð  k Þ x k ¼ lim  fa þ       ¼   f ðxÞ dx
                                                              n           n
                                             k¼1                k¼1
                                          n!1            n!1                      a
                                       n
                                            k
                                     1  X
                      5.2. Express lim    f    as a definite integral.
                                 n!1 n      n
                                       k¼1
                              Let a ¼ 0, b ¼ 1inProblem 1.  Then
                                                            n
                                                                k
                                                          1  X      ð  1
                                                       lim    f       f ðxÞ dx
                                                      n!1 n     n  ¼
                                                           k¼1       0
                                    ð 1
                                       2
                      5.3. (a) Express  x dx as a limit of a sum, and use the result to evaluate the given definite integral.
                                     0
                          (b) Interpret the result geometrically.
                                      2
                                                           2
                                                         2
                                                     2
                          (a)If f ðxÞ¼ x ,then f ðk=nÞ¼ ðk=nÞ ¼ k =n .  Thus by Problem 5.2,
                                                              n  2  ð  1
                                                            1  X  k    2
                                                         lim          x dx
                                                        n!1 n   n 2  ¼
                                                             k¼1     0
                              This can be written, using Problem 1.29 of Chapter 1,
                                           1          1 1  2       n       1 þ 2 þ     þ n
                                          ð              2  2       2  !    2  2       2
                                             2
                                            x dx ¼ lim    þ  þ     þ  ¼ lim
                                           0      n!1 n n 2  n 2   n 2  n!1      n 3
                                                ¼ lim  nðn þ 1Þð2n þ 1Þ
                                                          6n 3
                                                  n!1
                                                                     1
                                                ¼ lim  ð1 þ 1=nÞð2 þ 1=nÞ  ¼
                                                            6        3
                                                  n!1
                              which is the required limit.
                                 Note:  By  using  the  fundamental  theorem  of  the  calculus,  we  observe  that
                              Ð  1  2  3  1   3    3
                               0  x dx ¼ðx =3Þj 0 ¼ 1 =3   0 =3 ¼ 1=3.
                                                         2
                                                                                        1
                          (b) The area bounded by the curve y ¼ x ,the x-axis and the line x ¼ 1isequal to .
                                                                                        3
   106   107   108   109   110   111   112   113   114   115   116