Page 113 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 113

104                                 INTEGRALS                              [CHAP. 5



                     MEAN VALUE THEOREMS FOR INTEGRALS
                      5.9. Given the right triangle pictured in Fig. 5-6:  (a) Find the
                          average value of h.(b)At what point does this average value
                          occur?   (c) Determine  the   average   value   of
                                              1
                          f ðxÞ¼ sin  1  x; 0 @ x @ .  (Use integration by parts.)
                                              2
                                                               2
                          (d) Determine the average value of f ðxÞ¼ cos x; 0 @ x @  .
                                                                          2
                                   H
                                     x.According to the mean value theorem for integrals,
                                   B                                                    Fig. 5-6
                          (a) hðxÞ¼
                              the average value of the function h on the interval ½0; BŠ is
                                                             1  ð  B H  H
                                                         A ¼      xdx ¼
                                                             B 0 B     2
                          (b) The point,  ,at which the average value of h occurs may be obtained by equating f ð Þ with that average
                                      H    H          B
                              value, i.e.,  .  Thus,   ¼ .
                                      B    ¼  2       2
                     FUNDAMENTAL THEOREM OF THE CALCULUS
                                  ð x
                                     f ðtÞ dt where f ðxÞ is continuous in ½a; bŠ, prove that F ðxÞ¼ f ðxÞ.
                                                                                0
                     5.10. If FðxÞ¼
                                   a
                                                         1     ð xþh  ð x     1  ð xþh
                                           Fðx þ hÞ  FðxÞ
                                                                                  f ðtÞ dt
                                                h      ¼  h  a  f ðtÞ dt    a  f ðtÞ dt ¼  h x
                                                                 between x and x þ h
                                                       ¼ f ð Þ
                          by the first mean value theorem for integrals (Page 93).
                              Then if x is any point interior to ½a; bŠ,
                                                F ðxÞ¼ lim  Fðx þ hÞ  FðxÞ  ¼ lim f ð Þ¼ f ðxÞ
                                                  0
                                                      h!0     h        h!0
                          since f is continuous.
                              If x ¼ a or x ¼ b,weuse right- or left-hand limits, respectively, and the result holds in these cases as
                          well.

                     5.11. Prove the fundamental theorem of the calculus, Part 2 (Pages 94 and 95).
                              By Problem 5.10, if FðxÞ is any function whose derivative is f ðxÞ,wecan write
                                                               ð x
                                                                 f ðtÞ dt þ c
                                                          FðxÞ¼
                                                                a
                          where c is any constant (see last line of Problem 22, Chapter 4).
                                                          b             b
                                                         ð             ð
                                                           f ðtÞ dt þ FðaÞ or  f ðtÞ dt ¼ FðbÞ  FðaÞ.
                              Since FðaÞ¼ c,it follows that FðbÞ¼
                                                          a             a
                                                                  x
                                                                  ð
                                                                    f ðtÞ dt is continuous in ½a; bŠ.
                     5.12. If f ðxÞ is continuous in ½a; bŠ,prove that FðxÞ¼
                                                                  a
                              If x is any point interior to ½a; bŠ,thenasinProblem 5.10,
                                                    lim Fðx þ hÞ  FðxÞ¼ lim hf ð Þ¼ 0
                                                    h!0             h!0
                          and FðxÞ is continuous.
                              If x ¼ a and x ¼ b,weuse right- and left-hand limits, respectively, to show that FðxÞ is continuous at
                          x ¼ a and x ¼ b.
   108   109   110   111   112   113   114   115   116   117   118