Page 112 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 112

CHAP. 5]                            INTEGRALS                                   103


                                        1      1          1
                      5.4. Evaluate lim    þ      þ     þ    .
                                  n!1 n þ 1  n þ 2      n þ n
                              The required limit can be written
                                                                             n
                                          1    1      1          1         1  X  1
                                       lim                            ¼ lim
                                       n!1 n 1 þ 1=n  þ  1 þ 2=n  þ     þ  1 þ n=n  n!1 n  1 þ k=n
                                                                            k¼1
                                                                        ð 1  dx
                                                                                      1
                                                                              ¼ lnð1 þ xÞj 0 ¼ ln 2
                                                                        0 1 þ x
                                                                      ¼
                           using Problem 5.2 and the fundamental theorem of the calculus.

                                        1    t     2t         ðn   1Þt  1   cos t
                      5.5. Prove that lim  sin  þ sin  þ     þ sin            .
                                    n!1 n    n     n             n    ¼    t
                              Let a ¼ 0; b ¼ t; f ðxÞ¼ sin x in Problem 1.  Then
                                                        n
                                                      t  X   kt  ð t
                                                   lim    sin     sin xdx ¼ 1   cos t
                                                   n!1 n     n  ¼
                                                        k¼1      0
                           and so
                                                            n 1
                                                           1  X  kt  1   cos t
                                                        lim    sin
                                                       n!1 n      n  ¼  t
                                                            k¼1
                                            sin t
                           using the fact that lim  ¼ 0.
                                        n!1 n

                     MEASURE ZERO

                      5.6. Prove that a countable point set has measure zero.
                              Let the point set be denoted by x 1 ; x 2 ; x 3 ; x 4 ; ... and suppose that intervals of lengths less than
                            =2; =4; =8; =16; ... respectively enclose the points, where   is any positive number.  Then the sum of
                                                                                       1
                           the lengths of the intervals is less than  =2 þ  =4 þ  =8 þ      ¼   (let a ¼  =2 and r ¼ in Problem 2.25(a)of
                                                                                       2
                           Chapter 2), showing that the set has measure zero.


                     PROPERTIES OF DEFINITE INTEGRALS

                                     ð  b       ð b

                                       f ðxÞ dx  @  j f ðxÞj dx  if  a < b.

                      5.7. Prove that
                                       a         a
                              By absolute value property 2, Page 3,

                                                 n           n            n

                                                X           X            X
                                                   f ð  k Þ x k   @

                                                               j f ð  k Þ x k j¼  j f ð  k Þj x k

                                                k¼1         k¼1          k¼1
                           Taking the limit as n !1 and each  x k ! 0, we have the required result.
                                       ð 2   sin nx
                      5.8. Prove that lim        dx ¼ 0.
                                           2
                                        0 x þ n 2
                                    n!1
                                                 2            2            ð 2
                                                ð            ð
                                                   sin nx         sin nx     dx  2
                                                        dx @            dx @   ¼

                                                 0 x þ n      0 x þ n      0 n
                                                   2   2          2  2        2  n 2
                                   2
                                  ð
                                      sin nx
                           Then lim        dx ¼ 0, and so the required result follows.

                                   0 x þ n
                                      2  2
                               n!1
   107   108   109   110   111   112   113   114   115   116   117