Page 114 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 114

CHAP. 5]                            INTEGRALS                                   105


                           Another method:
                              By Problem 5.10 and Problem 4.3, Chapter 4, it follows that F ðxÞ exists and so FðxÞ must be con-
                                                                             0
                           tinuous.


                     CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

                     5.13. Prove the result (7), Page 95, for changing the variable of integration.
                                      ð x             ð t
                                                        f fgðtÞg g ðtÞ dt, where x ¼ gðtÞ.
                                                              0
                              Let FðxÞ¼  f ðxÞ dx and GðtÞ¼
                                       a
                              Then dF ¼ f ðxÞ dx, dG ¼ f fgðtÞg g ðtÞ dt.
                                                      0
                              Since dx ¼ g ðtÞ dt,it follows that f ðxÞ dx ¼ f fgðtÞg g ðtÞ dt so that dFðxÞ¼ dGðtÞ, from which
                                        0
                                                                       0
                           FðxÞ¼ GðtÞþ c.
                              Now when x ¼ a, t ¼   or FðaÞ¼ Gð Þþ c. But FðaÞ¼ Gð Þ¼ 0, so that c ¼ 0. Hence FðxÞ¼ GðtÞ.
                           Since x ¼ b when t ¼  ,we have
                                                       ð b      ð
                                                                  f fgðtÞg g ðtÞ dt
                                                                        0
                                                         f ðxÞ dx ¼
                                                        a
                           as required.
                     5.14. Evaluate:
                                                                                      p ffiffi
                               ð                             ð 1     dx             ð 1= 2  x sin  1  x 2
                                          2
                                ðx þ 2Þ sinðx þ 4x   6Þ dx                                 ffiffiffiffiffiffiffiffiffiffiffiffiffi dx
                           ðaÞ                          ðcÞ     p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ðeÞ  p  4
                                                              1  ðx þ 2Þð3   xÞ      0     1   x
                               ð                            ð                       ð
                                cotðln xÞ                       x     1 x                xdx
                                       dx                     2  tanh 2  dx
                                   x                                                   x þ x þ 1
                           ðbÞ                          ðdÞ                     ð f Þ  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                        2
                                           2
                                                                                  1
                           (a) Method 1: Let x þ 4x   6 ¼ u.  Then ð2x þ 4Þ dx ¼ du, ðx þ 2Þ dx ¼ du and the integral becomes
                                                                                  2
                                              1  ð       1          1     2
                                                                      cosðx þ 4x   6Þþ c
                                              2  sin udu ¼  2  cos u þ c ¼  2
                              Method 2:
                                ð                     1  ð                        1
                                          2                 2         2                2
                                                      2                           2
                                 ðx þ 2Þ sinðx þ 4x   6Þ dx ¼  sinðx þ 4x   6Þdðx þ 4x   6Þ¼   cosðx þ 4x   6Þþ c
                           (b)Let ln x ¼ u.  Then ðdxÞ=x ¼ du and the integral becomes
                                                  ð
                                                   cot udu ¼ ln j sin ujþ c ¼ ln j sinðln xÞj þ c
                                       ð             ð           ð             ð
                                             dx           dx           dx            dx
                              Method 1:
                           ðcÞ          p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                        6 þ x   x 2     2                 1 2
                                         ðx þ 2Þð3   xÞ             6  ðx   xÞ
                                                                                          2
                                                                                 25=4  ðx   Þ
                                          1
                                  Letting x   ¼ u,this becomes
                                          2
                                                   du         1 u        1 2x   1
                                               ð
                                                  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ sin  þ c ¼ sin  þ c
                                                p       2
                                                  25=4   u    5=2            5
                                  Then
                                         ð 1     dx                   1    1 1         3

                                             ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ sin  1 2x   1      ¼ sin    sin  1
                                            p
                                           1  ðx þ 2Þð3   xÞ    5      1    5          5
                                                        ¼ sin  1  :2 þ sin  1  :6
   109   110   111   112   113   114   115   116   117   118   119