Page 214 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 214

CHAP. 8]               APPLICATIONS OF PARTIAL DERIVATIVES                      205


                     8.72.  (a)Prove that the shortest distance from the point ða; b; cÞ to the plane Ax þ By þ Cz þ D ¼ 0is


                                                             Aa þ Bb þ Cc þ D
                                                            p
                                                             ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                              2
                                                                  2
                                                             A þ B þ C 2
                           (b)Find the shortest distance from ð1; 2;  3Þ to the plane 2x   3y þ 6z ¼ 20.  Ans.  (b)6
                     8.73.  The potential V due to a charge distribution is given in spherical coordinates ðr; ; Þ by
                                                                 p cos
                                                             V ¼   2
                                                                  r
                           where p is a constant.  Prove that the maximum directional derivative at any point is
                                                           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                      2
                                                               2
                                                           p sin   þ 4cos
                                                                r 3
                                       m
                                    ð  1  x   x n    m þ 1
                     8.74.  Prove that      dx ¼ ln      if m > 0; n > 0.  Can you extend the result to the case
                                     0  ln x       n þ 1
                           m >  1; n >  1?
                                                                              2
                                                                                       2
                                                                                                 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                                p
                                2
                                                                                                      2
                     8.75.  (a)If b   4ac < 0 and a > 0; c > 0, prove that the area of the ellipse ax þ bxy þ cy ¼ 1is 2 = 4ac   b .
                                                                2
                                                                    2
                                                                                                  2
                                                                                         2
                           [Hint: Find the maximum and minimum values of x þ y subject to the constraint ax þ bxy þ cy ¼ 1.]
                     8.76.  Prove that the maximum and minimum distances from the origin to the curve of intersection defined by
                            2
                                         2
                                    2
                                 2
                              2
                                       2
                           x =a þ y =b þ z =c ¼ 1 and Ax þ By þ Cz ¼ 0can be obtained by solving for d the equation
                                                               2 2
                                                        2 2
                                                                      2 2
                                                       A a    B b    C c
                                                                          ¼ 0
                                                       2
                                                                     2
                                                              2
                                                      a   d 2  þ  b   d 2  þ  c   d  2
                                                                                              2
                                                                                        2
                     8.77.  Prove that the last equation in the preceding problem always has two real solutions d 1 and d 2 for any real
                           non-zero constants a; b; c and any real constants A; B; C (not all zero). Discuss the geometrical significance
                           of this.
                                           ð  M  dx    1     1 M     M
                     8.78.  (a)Prove that I M ¼      ¼    tan   þ
                                               2  2 2  2  3        2  2   2
                                            0 ðx þ   Þ            2  ð  þ M Þ
                                                            ð  x  dx
                           ðbÞ Find lim I M :  This can be denoted by  :
                                                                2  2 2
                                  M!1
                                                             0 ðx þ   Þ
                                     d  ð M  dx    d     ð  M  dx
                           ðcÞ Is  lim               lim          ?
                                          2   2 2  ¼         2  2 2
                                                  d  M!1
                                M!1 d  0 ðx þ   Þ
                                                         0 ðx þ   Þ
                                                           2
                                                       2
                     8.79.  Find the point on the paraboloid z ¼ x þ y which is closest to the point ð3;  6; 4Þ.
                           Ans.  ð1;  2; 5Þ
                                                                             2
                                                                        2
                                                               2
                     8.80.  Investigate the maxima and minima of f ðx; yÞ¼ ðx   2x þ 4y   8yÞ .
                           Ans.  minimum value ¼ 0
                                      ð  =2  cos xdx           ln
                     8.81.  (a)Prove that           ¼   2      2   :
                                       0    cos x þ sin x  2ð  þ 1Þ    þ 1
                                                =2  cos xdx    3  þ 5   8ln 2
                                              ð       2
                           ðbÞ Use ðaÞ to prove that        2  ¼          :
                                               0  ð2cos x þ sin xÞ  50
                     8.82.  (a)Find sufficient conditions for a relative maximum or minimum of w ¼ f ðx; y; zÞ.
                                         2
                                               2
                                            2
                           (b) Examine w ¼ x þ y þ z   6xy þ 8xz   10yz for maxima and minima.
   209   210   211   212   213   214   215   216   217   218   219