Page 212 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 212

CHAP. 8]               APPLICATIONS OF PARTIAL DERIVATIVES                      203

                                                                                      2
                                                                                   2
                     8.46.  The temperature at any point ðx; yÞ in the xy plane is given by T ¼ 100xy=ðx þ y Þ.  (a)Find the direc-
                           tional derivative at the point ð2; 1Þ in a direction making an angle of 608 with the positive x-axis.  (b)In
                           what direction from ð2; 1Þ would the derivative be a maximum? (c) What is the value of this maximum?
                                    p ffiffiffi                                    1
                           Ans.  (a)12 3   6; (b)ina direction making an angle of     tan  2with the positive x-axis, or in the
                                            p ffiffiffi
                           direction  i þ 2j;(c)12 5
                     8.47.  Prove that if Fð ;  ; zÞ is continuously differentiable, the maximum directional derivative of F at any point is
                                 s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        2             2
                                    @F   1  @F    @F
                                                2
                           given by    þ        þ     .
                                    @      2  @   @z
                     DIFFERENTIATION UNDER THE INTEGRAL SIGN
                                  ð  1=         d             ð  1=         1    1   1
                                                                  2
                                                                       2
                                         2
                     8.48.  If  ð Þ¼  cos  x dx, find  .  Ans.     x sin  x dx    cos   p cos   2
                                                                                      ffiffiffi
                                   ffiffi           d               ffiffi            2     2

                                  p                            p
                                     ð 2
                                          1 x      dF
                     8.49.  (a)If Fð Þ¼  tan  dx, find  by Leibnitz’s rule. (b) Check the result in (a)bydirect integration.
                                     0              d
                           Ans.  ðaÞ 2  tan  1  1  2
                                            2
                                             lnð  þ 1Þ
                                                                            m
                                ð 1      1                  ð 1          ð 1Þ m!
                                                                   m
                                                               p
                                  p
                     8.50.  Given  x dx ¼  ; p >  1.  Prove that  x ðln xÞ dx ¼  mþ1  ; m ¼ 1; 2; 3; ... .
                                0      p þ 1                0           ðp þ 1Þ
                                                                !
                                                           ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                          p
                                   ð                       1     2
                     8.51.  Prove that  lnð1 þ   cos xÞ dx ¼   ln  1 þ  ; j j < 1.
                                    0                      2
                                   ð                         2
                                                  2
                     8.52.  Prove that  lnð1   2  cos x þ   Þ dx ¼    ln   ; j j < 1  .  Discuss the case j j¼ 1.
                                    0                    0;     j j > 1
                                   ð    dx      59
                     8.53.  Show that               :
                                             3  ¼  2048
                                   0 ð5   3cos xÞ
                     INTEGRATION UNDER THE INTEGRAL SIGN
                                    1  ð  2           2  ð 1
                                   ð                 ð
                                                           2
                                                              2
                                            2
                                         2
                     8.54.  Verify that  ð    x Þ dx d  ¼  ð    x Þ d  dx.
                                    0  1              1  0
                                            ð 2
                     8.55.  Starting with the result  ð    sin xÞ dx ¼ 2  ,prove that for all constants a and b,
                                             0
                                                ð 2
                                                          2         2        2   2
                                                   fðb   sin xÞ  ða   sin xÞ g dx ¼ 2 ðb   a Þ
                                                 0
                                     ð  2   dx    2
                     8.56.  Use the result    ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi ;  > 1to prove that
                                      0   þ sin x      1
                                                   2
                                                                           9
                                                     ð 2     5 þ 3 sin x
                                                        ln         dx ¼ 2  ln
                                                      0   5 þ 4 sin x      8
                                        ð  =2  dx    cos  1
                     8.57.  (a)Use the result      ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi ; 0 @  < 1toshow that for 0 @ a < 1; 0 @ b < 1
                                         0  1 þ   cos x  1     2
                                               =2     1 þ b cos x
                                             ð
                                                                                    2
                                                                           2
                                                                   1
                                                sec x ln       dx ¼ fðcos  1  aÞ  ðcos  1  bÞ g
                                              0       1 þ a cos x  2
                                      ð  =2                5  2
                           (b) Show that          1          .
                                                  2        72
                                         sec x lnð1 þ cos xÞ dx ¼
                                       0
   207   208   209   210   211   212   213   214   215   216   217