Page 208 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 208

CHAP. 8]               APPLICATIONS OF PARTIAL DERIVATIVES                      199

                                                                                                 x 2  y 2
                                                         2   2  2
                           (a)We must find the extrema of F ¼ x þ y þ z subject to the constraint conditions   1 ¼  4  þ  5  þ
                              z 2
                                  1 ¼ 0 and   2 ¼ x þ y   z ¼ 0. In this case we use two Lagrange multipliers   1 ;  2 and consider
                              25
                              the function
                                                                                !
                                                                    x 2  y 2  z 2
                                                        2  2   2
                                      G ¼ F þ   1   1 þ   2   2 ¼ x þ y þ z þ   1  þ  þ    1 þ   2 ðx þ y   zÞ
                                                                     4  5  25
                              Taking the partial derivatives of G with respect to x; y; z and setting them equal to zero, we find
                                             1 x                2  1 y                2  1 z
                                              þ   2 ¼ 0;           þ   2 ¼ 0;                2 ¼ 0
                                           2                     5                    25
                                   G x ¼ 2x þ           G y ¼ 2y þ            G x ¼ 2z þ              ð1Þ
                              Solving these equations for x; y; z,we find
                                                    2  2         5  2         25  2
                                                        ;            ;
                                                x ¼         y ¼          z ¼                          ð2Þ
                                                     1 þ 4     2  1 þ 10    2  1 þ 50
                                  From the second constraint condition, x þ y   z ¼ 0, we obtain on division by   2 ,assumed dif-
                              ferent from zero (this is justified since otherwise we would have x ¼ 0; y ¼ 0; z ¼ 0, which would not
                              satisfy the first constraint condition), the result
                                                       2      5       25
                                                                          ¼ 0
                                                       1 þ 4  þ  2  1 þ 10  þ  2  1 þ 50
                                Multiplying both sides by 2ð  1 þ 4Þð  1 þ 5Þð  1 þ 25Þ and simplifying yields
                                              2
                                            17  1 þ 245  1 þ 750 ¼ 0  or  ð  1 þ 10Þð17  1 þ 75Þ¼ 0
                              from which   1 ¼ 10 or  75=17.
                              Case 1:   1 ¼ 10.
                                            1     1      5                                     2    2
                                                  2
                                                         6
                                            3
                                  From (2), x ¼   2 ; y ¼   2 ; z ¼   2 . Substituting in the first constraint condition, x =4 þ y =5þ
                               2
                                            2
                                                             ffiffiffiffiffiffiffiffiffiffi
                              z =25 ¼ 1, yields   2 ¼ 180=19 or   2 ¼ 6 5=19.  This gives the two critical points
                                                            p
                                           p ffiffiffiffiffiffiffiffiffiffi p ffiffiffiffiffiffiffiffiffiffi p ffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffi
                                          ð2 5=19; 3 5=19; 5 5=19 Þ;  ð 2 5=19;  3 5=19;  5 5=19 Þ
                                            2
                                         2
                                                2
                              The value of x þ y þ z corresponding to these critical points is ð20 þ 45 þ 125Þ=19 ¼ 10.
                              Case 2:   1 ¼ 75=17:
                                              34      17     17   2 .  Substituting in the first constraint condition,
                                              7       4      28  p ffiffiffiffiffiffiffiffi
                                  From (2), x ¼    2 ; y ¼     2 ; z ¼
                               2
                                         2
                                    2
                              x =4 þ y =5 þ z =25 ¼ 1, yields   2 ¼ 140=ð17 646 Þ which gives the critical points
                                             ffiffiffiffiffiffiffiffi  ffiffiffiffiffiffiffiffi  ffiffiffiffiffiffiffiffi  ffiffiffiffiffiffiffiffi  ffiffiffiffiffiffiffiffi  ffiffiffiffiffiffiffiffi
                                           p       p     p            p       p      p
                                        ð40= 646;  35 646; 5= 646 Þ;  ð 40= 646; 35= 646;  5= 646 Þ
                                         2
                                                2
                                            2
                              The value of x þ y þ z corresponding to these is ð1600 þ 1225 þ 25Þ=646 ¼ 75=17.
                                  Thus, the required maximum value is 10 and the minimum value is 75/17.
                                          2
                                       2
                                   2
                           (b)Since x þ y þ z represents the square of the distance of ðx; y; zÞ from the origin ð0; 0; 0Þ,the problem
                              is equivalent to determining the largest and smallest distances from the origin to the curve of intersec-
                                                   2
                                                        2
                                             2
                              tion of the ellipsoid x =4 þ y =5 þ z =25 ¼ 1 and the plane z ¼ x þ y.Since this curve is an ellipse, we
                                                  p ffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffi
                              have the interpretation that  10 and  75=17 are the lengths of the semi-major and semi-minor axes of
                              this ellipse.
                                  The fact that the maximum and minimum values happen to be given by    1 in both Case 1 and
                              Case 2 is more than a coincidence.  It follows, in fact, on multiplying equations (1)by x, y, and z in
                              succession and adding, for we then obtain
                                                 1 x 2       2  1 y 2       2  1 z 2
                                             2             2             2
                                                2              5             25
                                           2x þ    þ   2 x þ 2y þ  þ   2 y þ 2z þ      2 z ¼ 0
                                                                    !
                                                                2
                                                                    2
                                                            2
                                               2
                                                      2
                                                   2
                                 i.e.,        x þ y þ z þ   1  x  þ  y  þ  z  þ   2 ðx þ y   zÞ¼ 0
                                                            4   5  25
                                                                2
                                                                       2
                                                                    2
                              Then using the constraint conditions, we find x þ y þ z ¼   1 .
                                  For a generalization of this problem, see Problem 8.76.
   203   204   205   206   207   208   209   210   211   212   213