Page 205 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 205

196                   APPLICATIONS OF PARTIAL DERIVATIVES                  [CHAP. 8

                                                                   !
                                                              ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                               2
                                    ð      b   cos x         p b   1
                     8.19. Prove that  ln        dx ¼   ln  b þ  p ffiffiffiffiffiffiffiffiffiffiffiffiffi  if a; b > 1.
                                                               2
                                    0   a   cos x         a þ  a   1
                                                       ð    dx
                              From Problem 5.58, Chapter 5,    ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi ;  > 1:
                                                       0     cos x      1
                                                                    2
                              Integrating the left side with respect to   from a to b yields

                                          ð   ð b  d      ð            b  ð      b   cos x
                                                                            ln        dx
                                                            lnð    cos xÞ dx ¼
                                                      dx ¼
                                           0  a     cos x  0           a   0   a   cos x
                              Integrating the right side with respect to   from a to b yields
                                                                                    !
                                                                               ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                              p
                                                                                2
                                             ð     d         p        b        b   1
                                                              ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                               2           b þ
                                                                       ¼   ln
                                               p  ffiffiffiffiffiffiffiffiffiffiffiffiffi ¼   lnð  þ      1 Þ  p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                 2
                                                                                2
                                              0      1                a    a þ  a   1
                          and the required result follows.
                     MAXIMA AND MINIMA
                     8.20. Prove that a necessary condition for f ðx; yÞ to have a relative extremum (maximum or minimum)
                          at ðx 0 ; y 0 Þ is that f x ðx 0 ; y 0 Þ¼ 0, f y ðx 0 ; y 0 Þ¼ 0.
                              If f ðx 0 ; y 0 Þ is to be an extreme value for f ðx; yÞ,then it must be an extreme value for both f ðx; y 0 Þ and
                          f ðx 0 ; yÞ. But a necessary condition that these have extreme values at x x ¼ 0 and y ¼ y 0 , respectively, is
                          f x ðx 0 ; y 0 Þ¼ 0, f y ðx 0 ; y 0 Þ¼ 0(using results for functions of one variable).
                     8.21. Let f be continuous and have continuous partial derivatives of order two, at least, in a region R
                          with the critical point P 0 ðx 0 ; y 0 Þ an interior point. Determine the sufficient conditions for relative
                          extrema at P 0 .
                              In the case of one variable, sufficient conditions for a relative extrema were formulated through the
                          second derivative [if positive then a relative minimum, if negative then a relative maximum, if zero a possible
                          point of inflection but more investigation is necessary]. In the case of z ¼ f ðx; yÞ that is before us we can
                          expect the second partial derivatives to supply information.  (See Fig. 8-6.)
















                                                            Fig. 8-6

                              First observe that solutions of the quadratic equation

                                                                          ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                         p  2
                                                                          4B   4AC
                                                  2                 2B
                                                At þ 2Bt þ C ¼ 0are t ¼
                                                                          2A
                                                                               2
                              Further observe that the nature of these solutions is determined by B   AC.Ifthe quantity is positive
                          the solutions are real and distinct; if negative, they are complex conjugate; and if zero, the two solutions are
                          coincident.
   200   201   202   203   204   205   206   207   208   209   210