Page 210 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 210

CHAP. 8]               APPLICATIONS OF PARTIAL DERIVATIVES                      201


                              The necessary conditions for a minimum are @F=@a ¼ 0, @F=@b ¼ 0. Performing these differentiations,
                           we obtain
                                       @F  ð     @     2     2      ð    2      2
                                               fsin x  ðax þ bxÞg dx ¼ 2  x fsin x  ðax þ bxÞg dx ¼ 0
                                          ¼
                                       @a   0 @a                     0
                                       @F  ð    @      2     2      ð          2
                                               fsin x  ðax þ bxÞg dx ¼ 2  xfsin x  ðax þ bxÞg dx ¼ 0
                                       @b  ¼  0 @b                   0
                           From these we find
                                                     ð        ð       ð
                                                   8
                                                    a  x dx þ b         x sin xdx
                                                   >    4        3       2
                                                   >            x dx ¼
                                                   <
                                                      0        0       0
                                                     ð        ð       ð
                                                   >    3        2
                                                    a  x dx þ b         x sin xdx
                                                   >
                                                   :            x dx ¼
                                                      0        0       0
                           or
                                                         8  5   4
                                                             a    b
                                                         >           2
                                                         >        ¼     4
                                                         <    þ
                                                            5   4
                                                                3
                                                            4
                                                             a    b
                                                         >
                                                         >
                                                         :        ¼
                                                            4  þ  3
                           Solving for a and b,we find
                                                 20  320               240  12

                                              a ¼  3     5    0:40065;  b    4     2    1:24798
                              We can show that for these values, Fða; bÞ is indeed a minimum using the sufficiency conditions on Page
                           188.
                                            2
                              The polynomial ax þ bx is said to be a least square approximation of sin x over the interval ð0; Þ. The
                           ideas involved here are of importance in many branches of mathematics and their applications.
                                                 Supplementary Problems
                     TANGENT PLANE AND NORMAL LINE TO A SURFACE
                                                                                        2
                                                                                     2
                     8.31.  Find the equations of the (a)tangent plane and (b) normal line to the surface x þ y ¼ 4z at ð2;  4; 5Þ.
                                                  x   2  y þ 4  z   5
                           Ans.  (a) x   2y   z ¼ 5;  ðbÞ  ¼  ¼   :
                                                    1     2     1
                     8.32.  If z ¼ f ðx; yÞ,prove that the equations for the tangent plane and normal line at point Pðx 0 ; y 0 ; z 0 Þ are given
                           respectively by
                                                                     x   x 0  y   y 0  z   z 0
                                                           and
                           ðaÞ  z   z 0 ¼ f x j P ðx   x 0 Þþ f y j P ð y   y 0 Þ  ðbÞ  ¼  ¼
                                                                      f x j P  f y j P   1
                     8.33.  Prove that the acute angle 
 between the z axis and the normal to the surface Fðx; y; zÞ¼ 0at any point is
                                       q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                 2
                                         2
                                             2
                                        F x þ F y þ F z =jF z j.
                           given by sec 
 ¼
                     8.34.  The equation of a surface is given in cylindrical coordinates by Fð ;  ; zÞ¼ 0, where F is continuously
                           differentiable.  Prove that the equations of (a)the tangent plane and (b)the normal line at the point
                           Pð  0 ;  0 ; z 0 Þ are given respectively by
                                                                           x   x 0  y   y 0  z   z 0
                                      Aðx   x 0 Þþ Bð y   y 0 Þþ Cðz   z 0 Þ¼ 0  and  ¼  ¼
                                                                            A      B      C
   205   206   207   208   209   210   211   212   213   214   215