Page 209 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 209

200                   APPLICATIONS OF PARTIAL DERIVATIVES                  [CHAP. 8



                     APPLICATIONS TO ERRORS
                                                                                ffiffiffiffiffiffiffi
                                                                               p
                     8.28. The period T of a simple pendulum of length l is given by T ¼ 2  l=g. Find the (a) error and
                                                                                        2
                           (b) percent error made in computing T by using l ¼ 2m and g ¼ 9:75 m=sec ,if the true values
                                                      2
                           are l ¼ 19:5m and g ¼ 9:81 m=sec .
                                      g
                           (a) T ¼ 2 l 1=2  1=2 .  Then
                                                                                    s ffiffiffiffiffi
                                                                                      l
                                                                    1  3=2
                                                    ð l
                                         dT ¼ð2 g  1=2 1  1=2 dlÞþð2 l 1=2 Þð  g  ffiffiffiffi dl      dg
                                                    2               2   dgÞ¼ p lg    g 3              ð1Þ
                                           Error in g ¼  g ¼ dg ¼þ0:06; error in l ¼  l ¼ dl ¼ 0:5
                                  The error in T is actually  T, which is in this case approximately equal to dT.  Thus, we have
                                from (1),
                                                                 s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                     2
                                                   ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð 0:05Þ     ðþ0:06Þ¼ 0:0444 sec (approx.)
                                                                       3
                                   Error in T ¼ dT ¼ p
                                                   ð2Þð9:75Þ       ð9:75Þ
                                                                  r ffiffiffiffiffiffiffiffiffi
                                                                    2
                                 The value of T for l ¼ 2; g ¼ 9:75 is T ¼ 2   ¼ 2:846 sec (approx.)
                                                                   9:75
                                                           dT   0:0444
                                                                      ¼ 1:56%:
                                                           T    2:846
                           ðbÞ  Percent error (or relative error) in T ¼  ¼
                                                                1
                                                           1
                              Another method:  Since ln T ¼ ln 2  þ ln l   ln g,
                                                           2
                                                                2

                                             dT   1 dl  1 dg  1  0:05    1 þ0:06

                                                                             ¼ 1:56%
                                              T  ¼  2 l     2 g  ¼  2  2     2  9:75                  ð2Þ
                              as before.  Note that (2)can be written
                                                          1               1  Percent error in g
                                          Percent error in T ¼  2  Percent error in l    2
                     MISCELLANEOUS PROBLEMS
                                  ð 1  x   1
                     8.29. Evaluate      dx.
                                   0 ln x
                              In order to evaluate this integral, we resort to the following device. Define
                                                             x   1
                                                            ð  1
                                                                   dx    > 0
                                                       ð Þ¼
                                                            0 ln x
                           Then by Leibnitz’s rule
                                                  1  @  x   1    1  x ln x  1       1
                                                 ð              ð          ð
                                             0
                                                  0 @   ln x     0 ln x     0        þ 1
                                              ð Þ¼          dx ¼       dx ¼  x dx ¼
                              Integrating with respect to  ,  ð Þ¼ lnð  þ 1Þþ c. But since  ð0Þ¼ 0; c ¼ 0; and so  ð Þ¼ lnð  þ 1Þ.
                              Then the value of the required integral is  ð1Þ¼ ln 2.

                              The applicability of Leibnitz’s rule can be justified here, since if we define Fðx; Þ¼ ðx   1Þ= ln x,
                           0 < x < 1, Fð0; Þ¼ 0; Fð1; Þ¼  ,then Fðx; Þ is continuous in both x and   for 0 @ x @ 1 and all finite
                            > 0.
                     8.30. Find constants a and b for which
                                                           ð
                                                                      2
                                                                            2
                                                             fsin x  ðax þ bxÞg dx
                                                   Fða; bÞ¼
                                                            0
                           is a minimum.
   204   205   206   207   208   209   210   211   212   213   214