Page 204 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 204

CHAP. 8]               APPLICATIONS OF PARTIAL DERIVATIVES                      195


                              Then
                                               ð  u 2 ð Þ              u 2           u 1
                                               ¼   f   ðx; Þ dx þ f ð  2 ;  þ   Þ        f ð  1 ;  þ   Þ
                                                u 1 ð Þ
                           Taking the limit as    ! 0, making use of the fact that the functions are assumed to have continuous
                           derivatives, we obtain
                                              d   ð u 2 ð Þ           du 2        du 1
                                              d   ¼   f   ðx; Þ dx þ f ½u 2 ð Þ; Š  d     f ½u 1 ð Þ; Š  d
                                                   u 1 ð Þ
                                  ð 2

                                     sin  x
                                          dx, find   ð Þ where   6¼ 0.
                                                  0
                     8.16. If  ð Þ¼
                                       x
                              By Leibnitz’s rule,
                                                ð 2
                                                    @    sin  x    sinð      Þ d  sinð     Þ d
                                                                    2
                                           0                              2
                                                   @   x              d             d
                                            ð Þ¼           dx þ   2     ð  Þ          ð Þ
                                                ð 2            3     2

                                                           2 sin    sin
                                              ¼   cos  xdx þ

                                                      2     3     2       3      2

                                                sin  x    2 sin    sin    3 sin     2 sin

                                              ¼       þ             ¼

                             ð    dx                     ð     dx
                     8.17. If         ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi ;  > 1 find  .  (See Problem 5.58, Chapter 5.)
                                           2
                             0     cos x      1           0 ð2   cos xÞ 2
                                                   ð    dx
                                                                2
                                                    0     cos x
                              By Leibnitz’s rule, if  ð Þ¼  ¼  ð    1Þ  1=2 ; then
                                                   ð    dx       1
                                             0                      2     3=2
                                                            2    2               2   3=2
                                             ð Þ¼             ¼   ð    1Þ  2  ¼
                                                    0 ð    cos xÞ              ð    1Þ

                                ð    dx                         ð    dx      2
                           Thus                       from which           ¼ p :
                                          2  ¼  2  3=2                    2    ffiffiffi
                                 0 ð    cos xÞ  ð    1Þ          0 ð2   cos xÞ  3 3
                     INTEGRATION UNDER THE INTEGRAL SIGN
                     8.18. Prove the result (18), Page 187, for integration under the integral sign.
                                               ð    ð
                                                u 2
                                                    f ðx; Þ d  dx
                              Consider ð1Þ   ð Þ¼
                                                u 1  a
                              By Leibnitz’s rule,
                                                      @
                                                   ð      ð            ð
                                                    u 2                 u 2
                                              0
                                                      @
                                               ð Þ¼        f ðx; Þ d  dx ¼  f ðx; Þ dx ¼  ð Þ
                                                    u 1   a             u 1
                                                    ð
                           Then by integration,  ð2Þ   ð Þ¼   ð Þ d  þ c
                                                     a
                              Since  ðaÞ¼ 0 from (1), we have c ¼ 0in (2).  Thus from (1) and (2)with c ¼ 0, we find

                                                 ð    ð           ð    ð
                                                  u 2                 u 2
                                                                       f ðx; Þ dx d
                                                      f ðx; Þ dx dx ¼
                                                  u 1  a           a  u 1
                           Putting   ¼ b,the required result follows.
   199   200   201   202   203   204   205   206   207   208   209