Page 203 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 203

194                   APPLICATIONS OF PARTIAL DERIVATIVES                  [CHAP. 8


                              dF      dr                            dr
                                        is the projection of rF in the direction  . This projection is a maximum when rF and
                              ds  ¼rF    ds                         ds
                          dr=ds have the same direction. Then the maximum value of dF=ds takes place in the direction of rF, and
                          the magnitude is jrFj.

                                                                      2
                                                                 3
                     8.14. (a) Find the directional derivative of U ¼ 2x y   3y z at Pð1; 2;  1Þ in a direction toward
                          Qð3;  1; 5Þ.  (b)In what direction from P is the directional derivative a maximum?
                          (c)What is the magnitude of the maximum directional derivative?
                                           3
                                                     2
                                     2
                              rU ¼ 6x yi þð2x   6yzÞj   3y k ¼ 12i þ 14j   12k at P:
                          ðaÞ
                                 The vector from P to Q  ¼ð3   1Þi þð 1   2Þj þ½5  ð 1ފk ¼ 2i   3j þ 6k.
                                                               2i   3j þ 6k  2i   3j þ 6k
                                                                                     :
                                 The unit vector from P to Q ¼ T ¼ q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼
                                                               2     2    2      7
                                                             ð2Þ þð 3Þ þð6Þ
                                 Then

                                                                           2i   3j þ 6k  90
                                        Directional derivative at P ¼ð12i þ 14j   12kÞ   ¼
                                                                               7         7
                              i.e., U is decreasing in this direction.
                          (b)From Problem 8.13, the directional derivative is a maximum in the direction 12i þ 14j   12k.
                          (c)  From Problem 8.13, the value of the maximum directional derivative is j12i þ 14j   12kj¼
                               ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                               144 þ 196 þ 144 ¼ 22:
                              p

                     DIFFERENTIATION UNDER THE INTEGRAL SIGN
                     8.15. Prove Leibnitz’s rule for differentiating under the integral sign.

                                       ð
                                        u 2 ð Þ
                              Let   ð Þ¼   f ðx; Þ dx:  Then
                                        u 1 ð Þ
                                                   ð                   ð
                                                    u 2 ð þ  Þ         u 2 ð Þ
                                                                          f ðx; Þ dx
                                   ¼  ð  þ   Þ   ð Þ¼     f ðx;  þ   Þ dx
                                                    u 1 ð þ  Þ         u 1 ð Þ
                                     ð                  ð                ð
                                      u 1 ð Þ            u 2 ð Þ          u 2 ð þ  Þ
                                                                               f ðx;  þ   Þ dx
                                   ¼       f ðx;  þ   Þ dx þ  f ðx;  þ   Þ dx þ
                                     u 1 ð þ  Þ          u 1 ð Þ         u 2 ð Þ
                                      ð
                                       u 2 ð Þ
                                          f ðx; Þ dx

                                       u 1 ð Þ
                                     ð                       ð                  ð
                                      u 2 ð Þ                 u 2 ð þ  Þ         u 1 ð þ  Þ
                                                                                       f ðx;  þ   Þ dx
                                   ¼    ½ f ðx;  þ   Þ  f ðx; ފ dx þ  f ðx;  þ   Þ dx
                                     u 1 ð Þ                  u 2 ð Þ            u 1 ð Þ
                          By the mean value theorems for integrals, we have
                                              ð                          ð
                                               u 2 ð Þ                    u 2 ð Þ
                                                 ½ f ðx;  þ   Þ  f ðx; ފ dx ¼     f   ðx; Þ dx      ð1Þ
                                               u 1 ð Þ                    u 1 ð Þ
                                           ð
                                            u 1 ð þ  Þ
                                                  f ðx;  þ   Þ dx ¼ f ð  1 ;  þ   Þ½u 1 ð  þ   Þ  u 1 ð ފ  ð2Þ
                                            u 1 ð Þ
                                           ð
                                            u 2 ð þ  Þ
                                                  f ðx;  þ   Þ dx ¼ f ð  2 ;  þ   Þ½u 2 ð  þ   Þ  u 2 ð ފ  ð3Þ
                                            u 2 ð Þ
                          where   is between   and   þ   ,   1 is between u 1 ð Þ and u 1 ð  þ   Þ and   2 is between u 2 ð Þ and u 2 ð  þ   Þ.
   198   199   200   201   202   203   204   205   206   207   208