Page 207 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 207

198                   APPLICATIONS OF PARTIAL DERIVATIVES                  [CHAP. 8


                                  @S     64              2         @S     64               2
                                                        x y ¼ 64;                        xy ¼ 64
                                  @x  ¼ y    x 2  ¼ 0 when ð3Þ     @y  ¼ x    y 2  ¼ 0 when ð4Þ
                                                                      3
                              Dividing equations (3) and (4), we find y ¼ x so that x ¼ 64 or x ¼ y ¼ 4 and z ¼ 2.

                                                     2   128  128               128  > 0.  Hence, it follows that
                              For x ¼ y ¼ 4,   ¼ S xx S yy   S xy ¼  3  3    1 > 0 and s xx ¼  3
                                                          x    y                x
                          the dimensions 4 ft   4ft   2ft give the minimum surface.


                     LAGRANGE MULTIPLIERS FOR MAXIMA AND MINIMA

                     8.24. Consider Fðx; y; zÞ subject to the constraint condition Gðx; y; zÞ¼ 0.  Prove that a necessary
                          condition that Fðx; y; zÞ have an extreme value is that F x G y   F y G x ¼ 0.
                              Since Gðx; y; zÞ¼ 0, we can consider z as a function of x and y,say z ¼ f ðx; yÞ.A necessary condition
                          that F½x; y; f ðx; yފ have an extreme value is that the partial derivatives with respect to x and y be zero. This
                          gives
                                                     F x þ F z z x ¼ 0  F y þ F z Z y ¼ 0
                                                  ð1Þ             ð2Þ
                          Since Gðx; y; zÞ¼ 0, we also have
                                                     G x þ G x z x ¼ 0  ð4Þ G y þ G z z y ¼ 0
                                                 ð3Þ
                          From (1) and (3)we have (5) F x G x   F x G x ¼ 0, and from (2) and (4)we have (6) F y G z   F z G y ¼ 0. Then
                          from (5) and (6)we find F x G y   F y G x ¼ 0:
                              The above results hold only if F z 6¼ 0; G z 6¼ 0.


                     8.25. Referring to the preceding problem, show that the stated condition is equivalent to the conditions
                            x ¼ 0;  y ¼ 0 where   ¼ F þ  G and   is a constant.
                              If   x ¼ 0; F x þ  G x ¼ 0.  If   y ¼ 0; F y þ  G y ¼ 0.  Elimination of   between these equations yields
                          F x G y   F y G x ¼ 0.
                              The multiplier   is the Lagrange multiplier.Ifdesired we can consider equivalently   ¼  F þ G where
                            x ¼ 0;  y ¼ 0.

                                                                                      2
                                                                            2
                     8.26. Find the shortest distance from the origin to the hyperbola x þ 8xy þ 7y ¼ 225, z ¼ 0.
                                                             2
                                                         2
                              We must find the minimum value of x þ y (the square of the distance from the origin to any point in
                                                       2
                                                                2
                          the xy plane) subject to the constraint x þ 8xy þ 7y ¼ 225.
                                                                                                      2
                                                                                        2
                                                                                                  2
                                                                               2
                              According to the method of Lagrange multipliers, we consider   ¼ x þ 8xy þ 7y   225 þ  ðx þ y Þ.
                          Then
                                              x ¼ 2x þ 8y þ 2 x ¼ 0  or  ð1Þ  ð  þ 1Þx þ 4y ¼ 0
                                              y ¼ 8x þ 14y þ 2 y ¼ 0  or  ð2Þ  4x þð  þ 7Þy ¼ 0
                          From (1) and (2), since ðx; yÞ 6¼ð0; 0Þ,we must have

                                              þ 1  4              2
                                                       ¼ 0;  i:e:;    þ 8    9 ¼ 0or    ¼ 1;  9
                                            4     þ 7
                                                                                               2
                                                                                  2
                                                                         2
                          Case 1:    ¼ 1. From (1)or(2), x ¼ 2y and substitution in x þ 8xy þ 7y ¼ 225 yields  5y ¼ 225, for
                          which no real solution exists.
                                                                           2
                                                                                                 2
                                                                                    2
                          Case 2:    ¼ 9.  From (1)or(2), y ¼ 2x and substitution in x þ 8xy þ 7y ¼ 225 yields 45x ¼ 225.
                                          2
                                2
                                     2
                                                     2
                                                         2
                                                                                            25 ¼ 5.
                          Then x ¼ 5; y ¼ 4x ¼ 20 and so x þ y ¼ 25.  Thus the required shortest distance is  p  ffiffiffiffiffi
                                                                      2
                                                                  2
                                                                          2
                     8.27  (a) Find the maximum and minimum values of x þ y þ z subject to the constraint conditions
                           2     2     2
                          x =4 þ y =5 þ z =25 ¼ 1 and z ¼ x þ y.(b) Give a geometric interpretation of the result in (a).
   202   203   204   205   206   207   208   209   210   211   212