Page 211 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 211

202                   APPLICATIONS OF PARTIAL DERIVATIVES                  [CHAP. 8



                          where x 0 ¼   0 cos   0 , y 0 ¼   0 sin   0 and
                                                 1                        1
                                    A ¼ F   j P cos   0   F   j P sin   0 ;  B ¼ F   j P sin   0 þ F   j P cos   0 ;  C ¼ F z j P


                     8.35.  Use Problem 8.34 to find the equation of the tangent plane to the surface  z ¼    at the point where   ¼ 2,
                            ¼  =2, z ¼ 1.  To check your answer work the problem using rectangular coordinates.
                          Ans.2x    y þ 2 z ¼ 0
                     TANGENT LINE AND NORMAL PLANE TO A CURVE
                     8.36.  Find the equations of the (a)tangent line and (b) normal plane to the space curve x ¼ 6 sin t, y ¼ 4cos 3t,
                          z ¼ 2 sin 5t at the point where t ¼  =4.
                                       p ffiffiffi   p ffiffiffi  p ffiffiffi
                                   x   3 2  y þ 2 2     2                    p ffiffiffi
                          Ans:                      z þ         3x   6y   5z ¼ 26 2
                                      3   ¼   6   ¼   5     ðbÞ
                               ðaÞ
                                                           2
                                                   2
                                                      2
                     8.37.  The surfaces x þ y þ z ¼ 3 and x   y þ 2z ¼ 2intersect in a space curve.  Find the equations of the
                          (a)tangent line  (b) normal plane to this space curve at the point ð1; 1; 1Þ.
                                   x   1  y   1  z   1
                          Ans:  ðaÞ    ¼     ¼     ;   ðbÞ  3x   y   2z ¼ 0
                                     3     1    2
                     ENVELOPES
                     8.38.  Find the envelope of each of the following families of curves in the xy plane. In each case construct a graph.
                                           x 2  y 2
                                     2
                          (a) y ¼  x     ;  ðbÞ  þ  ¼ 1.
                                               1
                                   2
                          Ans.(a) x ¼ 4y;  ðbÞ x þ y ¼ 1; x   y ¼ 1
                     8.39.  Find the envelope of a family of lines having the property that the length intercepted between the x and y
                          axes is a constant a.  Ans.  x 2=3  þ y 2=3  ¼ a 2=3

                                                                                     2
                     8.40.  Find the envelope of the family of circles having centers on the parabola y ¼ x and passing through its
                                                                                  3
                                                                             2
                                            2
                          vertex.  [Hint: Let ð ;   Þ be any point on the parabola.]  Ans.  x ¼ y =ð2y þ 1Þ
                                                                                 2
                                                                               1
                     8.41.  Find the envelope of the normals (called an evolute)tothe parabola y ¼ x and construct a graph.
                                                                               2
                                     3
                          Ans.8ðy   1Þ ¼ 27x 2
                     8.42.  Find the envelope of the following families of surfaces:
                                                        2
                                                            2
                                       2
                               ðx   yÞ    z ¼ 1;   ðx    Þ þ y ¼ 2 z
                          ðaÞ                  ðbÞ
                                                  2
                                                     2
                                           2
                          Ans. ðaÞ 4z ¼ðx   yÞ ;  ðbÞ y ¼ z þ 2xz
                     8.43.  Prove that the envelope of the two parameter family of surfaces Fðx; y; z; ;  Þ¼ 0, if it exists, is obtained by
                          eliminating   and   in the equations F ¼ 0; F   ¼ 0; F   ¼ 0.
                                                                                   2
                                                                               2
                     8.44.  Find the envelope of the two parameter families  (a) z ¼  x þ  y         and (b) x cos   þ y cos  þ
                                                2
                                          2
                                                      2
                          z cos 
 ¼ a where cos   þ cos   þ cos 
 ¼ 1 and a is a constant.
                                          2
                                                     2
                                       2
                                                        2
                                                 2
                          Ans. ðaÞ 4z ¼ x þ y ;  ðbÞ x þ y þ z ¼ a 2
                     DIRECTIONAL DERIVATIVES
                                                              2
                     8.45.  (a)Find the directional derivative of U ¼ 2xy   z at ð2;  1; 1Þ in a direction toward ð3; 1;  1Þ.(b)In what
                          direction is the directional derivative a maximum? (c) What is the value of this maximum?
                                                           p
                          Ans. ðaÞ 10=3;  ðbÞ  2i þ 4j   2k;  ðcÞ 2 6 ffiffiffi
   206   207   208   209   210   211   212   213   214   215   216