Page 429 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 429

420                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16


                                 ð
                                    2
                     16.53. Evaluate  ðz   z þ 2Þ dz, where C is the upper half of the circle jzj¼ 1 tranversed in the positive sense.
                                  C
                          Ans:    14=3
                                     z;
                                 þ
                     16.54. Evaluate    , where C is the circle  (a) jzj¼ 2;  ðbÞjz   3j¼ 2:
                                  C 2z   5
                          Ans:  ðaÞ 0;  ðbÞ 5 i=2

                                        z
                                  þ     2
                     16.55. Evaluate          dz, where C is:  (a)a square with vertices at  1   i;  1 þ i;  3 þ i;  3   i;
                                  C ðz þ 2Þðz   1Þ
                                                           p ffiffiffi
                          (b)the circle jz þ ij¼ 3;  (c)the circle jzj¼  2.
                          Ans:  ðaÞ  8 i=3 ðbÞ  2 i  ðcÞ 2 i=3
                                       cos  z         e þ z
                                     þ             þ   z
                     16.56. Evaluate  (a)   dz;  ðbÞ       dz where C is any simple closed curve enclosing z ¼ 1.
                                      C z   1       C ðz   1Þ 4
                          Ans:  ðaÞ  2 i  ðbÞ  ie=3
                     16.57. Prove Cauchy’s integral formulas.
                          [Hint: Use the definition of derivative and then apply mathematical induction.]

                     SERIES AND SINGULARITIES
                     16.58. For what values of z does each series converge?
                                     n             n
                              1             1             1
                              X             X             X
                                      ;             ;       ð 1Þ ðz þ 2z þ 2Þ :
                                ðz þ 2Þ       nðz   iÞ         n  2      2n
                                  n!           n þ 1
                          ðaÞ           ðbÞ            ðcÞ
                              n¼1           n¼1           n¼1
                          Ans:  ðaÞ all z  (b) jz   ij < 1 ðcÞ z ¼ 1   i
                                              z
                                          1    n
                                          X
                     16.59. Prove that the series  is  (a) absolutely convergent,  (b) uniformly convergent for jzj @ 1.
                                          n¼1  nðn þ 1Þ
                                                n
                                          1
                                         X  ðz þ iÞ
                     16.60. Prove that the series  converges uniformly within any circle of radius R such that jz þ ij < R < 2.
                                              2 n
                                          n¼0
                     16.61. Locate in the finite z plane all the singularities, if any, of each function and name them:
                                                            2
                               z   2          z            z þ 1          1      sinðz    =3Þ    cos z
                                   4               2      z þ 2z þ 2      z        3z            2   2
                                                          2
                          ðaÞ       ;  ðbÞ          ;  ðcÞ        ;  ðdÞ cos ;  ðeÞ       ;  ð f Þ    :
                              ð2z þ 1Þ    ðz   1Þðz þ 2Þ                                        ðz þ 4Þ
                                       1
                          Ans. (a) z ¼  , pole of order 4           (d) z ¼ 0, essential singularity
                                       2
                               (b) z ¼ 1, simple pole; z ¼ 2, double pole  (e) z ¼  =3, removable singularity
                               (c) simple poles z ¼ 1   i          ( f ) z ¼ 2i, double poles
                     16.62. Find Laurent series about the indicated singularity for each of the following functions, naming the singu-
                          larity in each case.  Indicate the region of convergence of each series.
                              cos z         2  1=z           z 2
                                  ; z ¼    ðbÞ z e  ; z ¼ 0         ; z ¼ 1
                              z
                          ðaÞ                         ðcÞ     2
                                                         ðz   1Þ ðz þ 3Þ
                                      1   z          3      5
                          Ans:  ðaÞ     þ        ðz    Þ  þ  ðz    Þ        ; simple pole, all z 6¼
                                    z      2!     4!     6!
                                         1  1    1    1
                                   2
                                        2!  3! z  4! z  5! z
                               ðbÞ z   z þ     þ  2     3  þ      ; essential singularity, all z 6¼ 0
   424   425   426   427   428   429   430   431   432   433   434